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Scaling and nonscaling finite-size effects in the Gaussian and the mean spherical model
with free boundary conditions
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We calculate finite-size effects of the Gaussian model in aL3L̃d21 box geometry with free boundary
conditions in one direction and periodic boundary conditions ind21 directions for 2,d,4. We also consider

film geometry (L̃→`). Finite-size scaling is found to be valid ford,3 andd.3 but logarithmic deviations
from finite-size scaling are found for the free energy and energy density at the Gaussian upper borderline
dimensiond* 53. The logarithms are related to the vanishing critical exponent 12a2n5(d23)/2 of the
Gaussian surface energy density. The latter has a cusplike singularity ind.3 dimensions. We show that these
properties are the origin of nonscaling finite-size effects in the mean spherical model with free boundary
conditions ind>3 dimensions. At bulkTc, in d53 dimensions we find an unexpectednonlogarithmicviola-
tion of finite-size scaling for the susceptibilityx;L3 of the mean spherical model in film geometry, whereas
only a logarithmic deviationx;L2 ln L exists for box geometry. The result for film geometry is explained by
the existence of the lower borderline dimensiondl53, as implied by the Mermin-Wagner theorem, that
coincides with the Gaussian upper borderline dimensiond* 53. For 3,d,4 we find a power-law violation of
scalingx;Ld21 at bulk Tc for box geometry and a nonscaling temperature dependencexsur f ace;jd of the
surface susceptibility aboveTc . For 2,d,3 dimensions we show the validity of universal finite-size scaling
for the susceptibility of the mean spherical model with free boundary conditions for both box and film
geometry and calculate the corresponding universal scaling functions forT>Tc .

DOI: 10.1103/PhysRevE.67.056127 PACS number~s!: 05.70.Jk, 64.60.2i
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I. INTRODUCTION AND SUMMARY

Finite-size effects near phase transitions and the con
of finite-size scaling near critical points have been the s
ject of many studies over the past decades@1–4#. Consider,
for example, the susceptibilityx(t,L) of a ferromagnetic
system at the reduced temperaturet5(T2Tc)/Tc>0 near
the bulk critical temperatureTc in a cubic geometry with a
linear sizeL below the upper critical dimensiond54. The
property of finite-size scaling means that, for sufficien
largeL and smallt, x has the asymptotic form

x~ t,L !5x~ t,`! f x~L/j!, ~1!

where x(t,`)5Axt2g is the bulk susceptibilty andj
5j0t2n is the bulk correlation length. An appealing featu
of finite-size scaling is universality which means that all no
universal parameters of the confined system can be abso
entirely in the bulk amplitudeAx and in thebulk correlation
lengthj, thus finite-size scaling functions such asf x(x) are
expected to be independent of nonuniversal details~such as
the lattice structure, the lattice spacing and the magnitud
coupling constants!. This implies that the amplitudeBx of
the small-x behavior f (x)5Bxxg/n for T→Tc at fixed L is
also universal. The specific shape and the amplitudeBx of
such scaling functions do, of course, depend on the geom
and the kind of boundary conditions. A central prediction
finite-size scaling is the size dependence at the bulk crit
temperatureTc

x~0,L !5Axj0
2g/nBxLg/n ~2!
1063-651X/2003/67~5!/056127~27!/$20.00 67 0561
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with the bulk critical exponentg/n and theuniversalampli-
tudeBx . For purely periodic boundary conditions and sho
range interactions, universal finite-size scaling in the sens
Eqs. ~1! and ~2! has been largely confirmed, except for th
nonuniversalexponential behavior in the regionL@j which
has recently been shown@5–8# to depend on the lattice struc
ture for lattice models and on the cutoff procedure for co
tinuum models.

Of particular interest are nonperiodic boundary con
tions, which are relevant for real systems. For example,
the superfluid transition of4He, Dirichlet boundary condi-
tions of field theories are believed to be fairly realistic@9#.
For this system, however, accurate experiments have
tected nonscaling finite-size effects on both static@9–12# and
dynamic@13,14# properties that are as yet unexplained. F
thermore there exist unexplained finite-size effects in theXY
model with nonperiodic boundary conditions as detected
Monte Carlo simulations@15#.

On the theoretical side, the true conditions for the valid
of universal finite-size scaling for systems with nonperiod
boundary conditions are not established. This includes
important case of free boundary conditions for lattice mod
that are believed to be asymptotically equivalent to Dirich
boundary conditions of continuum models. It is known th
universal finite-size scaling in the sense of Eq.~1! fails for
the mean spherical model in film geometry with free boun
ary conditions ind53 andd54 dimensions@2,16–18#, and
similarly for the ideal Bose gas with Dirichlet boundary co
ditions for cubic and film geometries@2,19–21#. In these
models the bulk correlation length could not be used as
only reference length and nonscaling finite-size effects w
©2003 The American Physical Society27-1
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incorporated in nonuniversal shifts of the temperature v
able @16–21#. Logarithmic nonscaling finite-size effects th
depend on the lattice spacing exist also in Gaussian inter
models@22# as well as in other models@4#.

On the other hand, universal amplitude ratios have b
found for critical systems contained in parallel plates w
nonperiodic boundary conditions@23#. Furthermore, field-
theoretic renormalization-group calculations have appare
confirmed the validity of universal finite-size scaling with
the w4 field theory with Dirichlet boundary conditions: Un
versal finite-size amplitude ratios@24# and universal finite-
size contributions to the free energy density and to the c
cal Casimir force were calculated both in the Gaussian~one-
loop! approximation@25–27# as well as in two-loop orde
@26#. Universal finite-size scaling functions have also be
predicted for the specific heat and the superfluid density
the presence of Dirichlet boundary conditions@9,28#. Related
field-theoretic predictions have also been presented for
face quantities@29,30#. In these papers@24–30#, however,
the method of dimensional regularization was employ
which neglects lattice and cutoff effects. Recent work
finite-size effects@5–8,31–35# has demonstrated that gener
renormalization-group arguments are not sufficient to pr
the validity of universal finite-size scaling and that cutoff a
lattice effects are nonnegligible for confined systems w
periodic boundary conditions. Clearly these investigatio
need to be extended to the case of nonperiodic boun
conditions.

The corresponding analytic calculations, at finite cut
and at finite lattice spacing, become quite difficult within t
w4 theory beyond the lowest order. Before embarking
such an ambitious project it is, of course, necessary to
examine the lowest-order case under the simplest nontr
conditions, i.e., with free~or Dirichlet! boundary conditions
in only one direction. Therefore, as a first step, we consi
the exactly solvable Gaussian model with short-range in
action on a simple-cubic lattice with a lattice constantã for a
finite rectangularL3L̃d21 box geometry with free boundar
conditions in one direction and periodic boundary conditio
in d21 directions. Even at the Gaussian level, the anal
calculations at finite lattice spacing in the range 2,d,4
turn out to be nontrivial.

For the specific heat and the susceptibility of the Gauss
model we find full agreement with universal finite-size sc
ing. With regard to the singular part of the free energy
find that the finite-size scaling form is indeed valid ford
,3 and d.3 but logarithmic deviations from finite-siz
scaling occur atd53 where the critical exponent 12a2n
5(d23)/2 of the surface energy density vanishes. In or
to describe the logarithmicd53 behavior it is necessary t
keep the lattice spacing finite. We find that the same lo
rithmic deviations from finite-size scaling exist in the co
tinuum version of the Gaussian model with Dirichlet boun
ary conditions provided that a finite cutoff is used. Th
implies that the method of dimensional regularization at
finite cutoff is not capable of correctly describing thed53
behavior of the singular part of the free energy density and
the energy density since it yields unphysical divergences
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these quantities in the form of a pole term;(d23)21 @36#.
As discussed in Sec. III H, the dimensiond53 can be con-
sidered as an upper borderline dimensiond* of the Gaussian
model with free boundary conditions above which the latt
and cutoff effects become non-negligible for the surface
ergy density.

For d.3 we find that the surface energy dens
Usur f ace(t) of the Gaussian model with free boundary co
ditions has a cusplike singularity at bulkTc as Tc is ap-
proached from above. For the lattice model at finite latt
spacingã the height of the cusp is

lim
t→01

Usur f ace~ t !5Usur f ace~0!5Tcj0
22ã32dB̃d ~3!

with

B̃d5
1

8E0

`

dy$@11e24y22e22yI 0~2y!#@e22yI 0~2y!#d21%

.0, ~4!

where I 0(z) is the Bessel function of order zero. The tem
perature dependent part ofUsur f ace(t) has a universal scaling
form ;j32d, but it vanishes atTc and is subleading com
pared to the nonuniversal finite regular part, Eq.~3!, at Tc .
The latter part yields a leading nonscaling contributi
2Usur f ace(0)/L to the total energy density. These results
main valid also for the Gaussian model in the film geome
(L̃→`) with free boundary conditions.

In a second step we analyze the exactly solvable m
spherical model with the same boundary conditions. Pre
ously this model has been studied for the film geometry
integer dimensionsd53,4,5, . . . @16,17#. Here we extend
this analysis tocontinuousdimensions in the range 2,d
,4 and consider both the film and box geometries. T
revealsd53 as a borderline dimension between a univer
scaling (d,3) and a nonuniversal nonscaling (d>3) re-
gime. In this paper we calculate the nonscaling effects
3<d,4 as well as the analytic form of the universal finit
size scaling functionf x(L/j), Eq. ~1!, of the susceptibility
for 2,d,3 including the amplitudeB(s) of the scaling
result, Eq.~2! with g/n52,

x~0,L !5B~s!L2, d,3 ~5!

at an arbitrary shape factors5L/L̃>0. The amplitudeB(s)
is shown to diverge ford→3.

The mean spherical model can be considered as a Ga
ian model with a constraint where the constraint can be
pressed in terms of the Gaussian energy density. Our re
for the latter quantity explain the origin of logarithmic non
scaling terms in thermodynamic quantities of the me
spherical model atd53 and of power-law violations of
finite-size scaling for 3,d,4. While previous work sug-
gested the existence of onlylogarithmic deviations from
finite-size scaling ind53 dimensions@2,16–21# we find,
quite unexpectedly, anonlogarithmicviolation of the scaling
7-2
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SCALING AND NONSCALING FINITE-SIZE EFFECTS . . . PHYSICAL REVIEW E 67, 056127 ~2003!
prediction, Eq.~5!, for the size dependence of the suscep
bility at bulk Tc in d53 dimensions

x~0,L !5Bf ilmã21L3 ~6!

for film geometry, whereas for box geometry, at a fixed fin
shape factors5L/L̃.0, we find the expected logarithmi
deviation from scaling

x~0,L !5Bbox~s!L2ln~L/ã!. ~7!

As will be shown in detail in Sec. IV C, the special result
Eq. ~6! for the film geometry atd53 is due to the simulta-
neous appearance of two logarithmic effects atd53 where
two borderline dimensions coincide: it is a combined eff
of the logarithmicsurfaceterm of the Gaussian model at th
~upper! borderline dimensiond* 53, where the exponent 1
2a2n vanishes, and of a logarithmicfinite-sizeterm arising
from the mode continuum of the film system just at t
~lower! borderline dimensiondl53 at which the film critical
temperature vanishes in accordance with the Merm
Wagner theorem@37#. Most striking is thediscontinuous
change of the exponent 2 of the power lawx f i lm5B(0)L2

for d,3, Eq. ~5!, to 3 of the power law x f i lm

5Bf ilmã21L3 for d53, Eq. ~6!.
The result of Eq.~6! is not contained in the work of Bar

ber and Fisher@16# who calculatedx for the film geometry in
d53 dimensions only forT>T̃(L) whereT̃(L).Tc is some
temperature that they called ‘‘quasicritical.’’ Ourd53 result
for x(t,L) covers the entire critical regionT>Tc including
the regimeT>T̃(L). In the latter regime, the explicit form
of our result is at variance with the simpler form of Barb
and Fisher.

For box geometry in 3,d,4 dimensions we find a
power-law violation of scaling atTc

x~0,L !5Bbox~s,d!ã32dLd21, ~8!

where the amplitudeBbox(s,d) is proportional to the ampli-
tudeB̃d , Eq. ~4!, of the cusp of the Gaussian surface ene
density. A nonscaling form is also found for the temperat
dependence of the surface susceptibility for 3,d,4 above
Tc ,

xsur f ace5Ãsur f aceã
32djd;t2d/(d22) ~9!

with j;t2n,n5(d22)21, whereas the scaling form, Eq
~1!, would imply xsur f ace;O(xbj);t23/(d22) for the mean
spherical model. Again the amplitudeÃsur f ace in Eq. ~9! is
proportional toB̃d .

For the film geometry ind.3 dimensions we find an
anomalous enhancement of the film critical temperat
Tc,d(L) abovethe bulk critical temperatureTc,d(`). A cor-
responding shift was first found ford>4 by Barber and
Fisher@16#. This enhancement is most naturally expressed
terms of the dimensionless parameter 2Jbc,d(L)
52J@kBTc,d(L)#21 where J is the nearest-neighbor cou
pling. The result is, ford.3,
05612
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2J@bc,d~`!2bc,d~L !#

54B̃dã/L2C̃d~ ã/L !d221O~ ãd/2L2d/2! ~10!

with the nonuniversal amplitudeB̃d , Eq. ~4!, and with a
universal amplitude C̃d.0. Eq. ~10! implies Tc,d(L)
.Tc,d(`) for large L@ã. The leading term;L21 in Eq.
~10! has a nonscalingL dependence whereas the sublead
universal term has the scalingL dependence;L1/n.

In summary, we see that both the anomalous nonsca
enhancement ofTc,d(L), Eq. ~10!, and the power-law viola-
tions, Eqs.~8! and ~9!, for d.3 can be traced back to th
same amplitudeB̃d , Eq. ~4!, of the nonscaling cusp of the
Gaussian model. Thus the analysis of the Gaussian m
provides a better understanding of the origin of the pow
law nonscaling finite-size effects in the mean spheri
model for d.3, and, for box geometry, of the logarithmi
deviations at the Gaussian upper borderline dimensiond*
53. For film geometry, however, the Gaussian logarithm
effect atd* 53 is enhanced by a second logarithmic effe
due to the lower borderline dimensiondl53 ~where the film
critical temperature vanishes!, which then yields the powe
law Eq. ~6!.

We point out that all nonscaling effects are tied to t
finite lattice constantã.0, as seen explicitly in Eqs.~3! and
~6!–~10!. We expect that similar effects exist in the ide
Bose gas with Dirichlet boundary conditions@19–21#. These
effects are not captured by the standard method of dim
sional regularization. It remains to be seen whether
mechanism for nonscaling finite-size effects in the me
spherical model and the ideal Bose gas is an artifact
stricted to these models or whether some of these feature
of more general significance. This question is of particu
interest belowTc where an explanation of the pronounce
nonscaling finite-size effects in4He remains a challenge fo
future research.

In Sec. II we summarize the predictions implied by t
finite-size scaling hypothesis. Section III contains the d
tailed results for the finite-size effects in the Gaussian lat
model with free boundary conditions and in the Gauss
continuum model with Dirichlet boundary conditions. In Se
IV we analyze the consequences of our results for the m
spherical model with free boundary conditions. The deriv
tion of our results is presented in appendixes.

II. FINITE-SIZE SCALING PREDICTIONS

In the subsequent sections we shall present exact re
for the finite-size effects on the free energy density, ene
density, specific heat and susceptibility of lattice models i
rectangularL3L̃d21 box geometry with free boundary con
ditions in the direction of sizeL and periodic boundary con
ditions in the d21 directions of sizeL̃. For the sake of
clarity, we first summarize the predictions implied by th
finite-size scaling hypothesis, which, for this geometry a
these boundary conditions, have not yet been formulated
plicitly in the literature. We denote the critical temperature
the d-dimensional bulk (L→`,L̃→`) system byTc,d . In
7-3
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the limit L̃→` at fixedL, the box becomes a film of thick
ness L, which may have its own critical temperatu
Tc,d(L)ÞTc,d[Tc,d(`). In general one expectsTc,d(L)
,Tc,d, but it turns out~see Sec. IV, see also Ref.@16#! that
for the mean spherical model withd.3 the film critical
temperatureTc,d(L) exceeds the bulk critical temperatu
Tc,d . For simplicity, in this section, we assume
d-dimensional box with afinite shape factorL/L̃.0 and
confine ourselves toT>Tc,d .

First we consider the free energy densityf (t,L,L̃) ~in
units of kBT) at the reduced temperaturet5(T2Tc,d)/Tc,d
>0 and at vanishing external field. It is expected that,
small t, f can be decomposed into a singular and a ‘‘nons
gular’’ part @38,39#

f ~ t,L,L̃ !5 f s~ t,L,L̃ !1 f ns~ t,L,L̃ !, ~11!

where f ns(t,L,L̃) has a regulart dependence. In the bul
limit, the corresponding decomposition is

f b~ t ![ f ~ t,`,`!5 f bs~ t !1 f 0~ t !, ~12!

where the regular partf 0(t)[ f ns(t,`,`) can be identified
unambiguously. For systems with short-range interactio
below the upper critical dimensiond54 and for largeL,L̃
andj, it is expected that the singular partf s(t,L,L̃) has the
finite-size scaling form@1,38#

f s~ t,L,L̃ !5L2dF~L/j,L/L̃ !, ~13!

where j(t)5j0t2n is the ~second-moment! correlation
length of thed-dimensional bulk system. For a given sha
factors5L/L̃, the scaling functionF(x,s) is expected to be
universal. More specifically, the singular and nonsingu
parts of the free energy density are expected to have
asymptotic~small t, largeL, largeL̃) form @1,4,38,39#

f s~ t,L,L̃ !5Yj2d12Asur f ace
1 j12dL211L2dG~L/j,L/L̃ !

~14!

and

f ns~ t,L,L̃ !5 f 0~ t !12C1~ t !/L ~15!

with a universal bulk amplitudeY and a universal surfac
amplitude Asur f ace

1 , and with a universal finite-size pa

G(L/j,L/L̃) of the scaling function

F~L/j,L/L̃ !5Y~L/j!d12Asur f ace
1 ~L/j!d211G~L/j,L/L̃ !.

~16!

Equations~14!–~16! imply that there exists the surface fre
energy
05612
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f sur f ace~ t !5 lim
L→`

H @ f ~ t,L,L̃ !2 f b~ t !#
L

2J
5Asur f ace

1 j12d1C1~ t ! ~17!

with a universal amplitudeAsur f ace
1 of the singular part. The

nonsingular surface contributionC1(t) is a regular function
of t. Nonasymptotic Wegner@40# corrections to scaling are
neglected in Eqs.~13!, ~14!, ~16!, and~17!. The phenomeno-
logical finite-size scaling theory does not make specific p
dictions about the dependence onL and L̃ of higher-order
terms in Eq.~15!.

Equations~11!–~17! are expected to hold also for con
tinuum models with Dirichlet boundary conditions in on
direction, with the same universal quantities as for fr
boundary conditions of lattice systems. As noted in the
troduction, however, there existnonuniversalexponential
terms in the regimeL@j,L̃@j, where the lattice-dependen
and cutoff-dependent exponential correlation length@7,8,41#
becomes the appropriate reference length.

Although the energy density~internal energy per unit vol-
ume! divided bykB

U~ t,L,L̃ !52T2
] f ~ t,L,L̃ !

]T
~18!

is completely determined by the free energy dens
f (t,L,L̃), it turns out that a separate discussion of the ene
density is warranted because of its important role played
the mean spherical model in Sec. IV. From Eqs.~11!–~15!
one obtains the prediction

U~ t,L,L̃ !5Us~ t,L,L̃ !1Uns~ t,L,L̃ !, ~19!

where the singular part

Us~ t,L,L̃ !5Tcj0
21/nL2(12a)/nU~L/j,L/L̃ ! ~20!

has the universal scaling function

U~x,s!52nx121/n]F~x,s!/]x ~21!

52dnYxd21/n22~d21!nAsur f ace
1 xd2121/n

2nx121/n]G~x,s!/]x ~22!

and where the leading nonsingular part

Uns~ t,L,L̃ !5U0~ t !12U1~ t !/L ~23!

has a regulart dependence withU0(t)52T2] f 0(t)/]T and

U1~ t !52T2]C1~ t !/]T. ~24!

For the surface energy density, Eq.~14! implies asymptoti-
cally

Usur f ace~ t !52T2] f sur f ace~ t !/]T ~25!
7-4
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5U1~ t !2Tcj0
21/n~d21!nAsur f ace

1 j2(12a2n)/n. ~26!

In Eqs.~20! and~26! we have used the hyperscaling relati

dn522a. ~27!

These scaling predictions have been confirmed by sev
field-theoretic renormalization-group calculations
f s(t,L,`) @26# and ofUsur f ace@24,36,42,43# based on thew4

continuum Hamiltonian with Dirichlet boundary condition
for the field w(x). All calculations, however, were carrie
out within the dimensional regularization scheme that
glects cutoff effects. As pointed out by Dohm@9,36#, an un-
resolved feature of the dimensionally regularized pertur
tive results for Usur f ace @24,26,36,42,43# is a pole term
;(d23)21 that diverges in three dimensions.

We note that the critical exponent ofUsur f ace(t)

12a2n5~d21!n21 ~28!

is positive for ordinary critical points of theO(n) universal-
ity class with d.2 which implies afinite critical value
Usur f ace(0)5U1(0). By contrast, for the Gaussian mode
12a2n5(d23)/2 is positive only for d.3, thus
Usur f ace(t) diverges fort→0 in d<3 dimensions~see Sec.
III !.

We shall also consider the specific heat~divided bykB)

C~ t,L,L̃ !5
]U~ t,L,L̃ !

]T
5Cs~ t,L,L̃ !1Cns~ t,L,L̃ !.

~29!

From Eqs.~19!–~23! we obtain the predictions

Cs~ t,L,L̃ !5j0
22/nLa/nC~L/j,L/L̃ ! ~30!

and

Cns~ t,L,L̃ !5]U0~ t !/]t12L21]U1~ t !/]t ~31!

with the universal scaling function

C~x,s!5nx121/n]U~x,s!/]x. ~32!

The scaling structure implies that the surface specific h
Csur f ace(t)5]Usur f ace(t)/]T has a divergent singular part

Csur f ace~ t !5j0
12dAC,sur f ace

1 t2as1]U1~ t !/]T ~33!

with the surface scaling exponent

as5a1n ~34!

and with a universal amplitude

AC,sur f ace
1 52~12a2n!~d21!nAsur f ace

1 . ~35!

Finally we recall the prediction for the asymptotic scali
form of the susceptibility

x~ t,L,L̃ !5xb~ t ! f x~L/j,L/L̃ ! ~36!
05612
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according to Eq.~1!, where xb(t)5x(t,`)5Axt2g is the
bulk susceptibility. ForL@j,L̃@j, the scaling function is
expected to have the expansion

f x~L/j,L/L̃ !511cxj/L1O~j2/L2,e2L̃/j! ~37!

with the universal coefficientcx . For t.0, this implies

xsur f ace~ t !5 lim
L→`

H @x~ t,L,L̃ !2xb~ t !#
L

2J 5Ax,sur f ace
1 t2gs

~38!

with the surface scaling exponent

gs5g1n ~39!

and with the surface amplitude

Ax,sur f ace
1 5 1

2 Axj0cx . ~40!

For T→Tc,d , the smallL/j behavior of the scaling function
is expected to be

f x~L/j,L/L̃ !;Bx~L/L̃ !~L/j!g/n ~41!

with a finite universal amplitudeBx(L/L̃).0, which implies

x~0,L,L̃ !5Axj0
2g/nBx~L/L̃ !Lg/n. ~42!

In the following, we examine the range of validity of thes
predictions for the exactly solvable Gaussian and m
spherical models in 2,d,4 dimensions.

III. GAUSSIAN LATTICE MODEL WITH FREE
BOUNDARY CONDITIONS

A. Lattice Hamiltonian

We considerN continuous scalar variablesw j ,2`<w j
<`, on the lattice pointsxj of a simple-cubic lattice with a
lattice spacingã in a finite rectangularL3L̃d21 box of vol-
ume V5LL̃d215Nãd. We assume a Gaussian statistic
weight ;exp(2H) with the lattice Hamiltonian

H5ãdF(
j

r 0

2
w j

21(̂
i j &

J

2ã2
~w i2w j !

2G ~43!

with a nearest-neighbor couplingJ.0. The factor (kBT)21

is absorbed inH. The dimensionless partition function is

Z5F)
j
E

2`

` dw j

ã12d/2Gexp~2H !. ~44!

In the bulk limit L̃→`,L→`, this model has a critical poin
at r 050 for arbitraryd.0. We assume that the temperatu
T enters only through

r 05a0

T2Tc

Tc
, a0.0. ~45!
7-5
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A serious shortcoming of this model is the fact that it has
low temperature phase, i.e., no bulk limit exists forr 0,0.
Nevertheless, there exist nontrivial finite-size effects forr 0
>0, as we shall see.

We assume free boundary conditions in thedth ~vertical!
direction and periodic boundary conditions in thed21 ~hori-
zontal! directions. Thed21 horizontal coordinates and th
vertical coordinate of the lattice pointsxj5(yj ,zj ) are de-
noted byyj and zj , respectively. The ‘‘bottom’’ and ‘‘top’’
surfaces perpendicular to the vertical direction have the
ordinateszj5ã and zj5L, respectively, thus we haveL/ã
layers of fluctuating variables. The variables in the bott
and top surfaces have only one neighboring layer. This
equivalent to assuming Dirichlet boundary conditions (w j
50) in the~fictitious! layerszj50 below the bottom surface
andzj5L1ã above the top surface. The variablesw j can be
represented as

w j5L̃2(d21)~L1ã!21(
k,p

ŵk,pexp~ ik•yj !A2 sin~pzj !

~46!

with the Fourier amplitudes

ŵk,p5ãd(
j

w jexp~2 ik•yj !A2 sin~pzj !. ~47!

The sum(k,p runs over (d21)-dimensionalk vectors with
componentski52pmi /L̃,i 51, . . . ,d21 with integersmi

50, 61,62, . . . , in therange2p/ã<ki,p/ã and over
wave numbersp5pn/(L1ã), n51,2, . . . ,L/ã in the range
0,p,p/ã. Equation ~47! follows from
(zj

2sin(pzj) sin(p8zj)5(L1ã)ã21dp,p8. We see that, forL/ã
layers with free boundary conditions, the natural unit wa
number inp space isp/(L1ã) rather thanp/L. For each
given p, there are (L̃/ã)d21 variablesŵk,p . Equation~46!

implies w j50 at zj50 andw j50 at zj5L1ã for arbitrary
yi , thus we have a total number ofN5(L/ã)(L̃/ã)d21 vari-
ables ŵk,p . Substituting Eq.~46! into Eq. ~43! yields the
diagonalized Hamiltonian

H5
1

2
L̃2(d21)~L1ã!21(

k,p
~r 01Jk,d211Jp!ŵk,pŵ2k,p

~48!

with

Jk,d215
4J

ã2 (
i 51

d21

@12cos~ki ã!#, ~49!

Jp5
4J

ã2
@12cos~pã!#. ~50!

The Jacobian of the linear transformationw j→ŵk,p of Eq.
~46! is
05612
o

o-

is

e

U ]w j

]ŵk,p
U5@ ãdL̃d21~L1ã!#2N/2. ~51!

Using Eqs.~44!, ~46!, ~48!, and ~51!, we obtain the free
energy density divided bykBT

f ~ t,L,L̃ !52V21ln Z52
1

2
ã2d@ ln p1~ L̃/ã!12dln 2#

1
1

2
L̃2(d21)L21(

k,p
ln@~r 01Jk,d211Jp!ã2#.

~52!

In all calculations of this section, we shall keep the latti
spacingã finite.

In the following, we shall also consider film geomet
~bulk limit in the d21 horizontal directions!. In Eq. ~52!,
this corresponds to the replacementL̃2(d21)(k,p→(p*k

where *k[(2p)12d*dd21k with uki u<p/ã,i 51,2, . . . ,d
21; hence

f ~ t,L,`!52
1

2
ã2dln p1

1

2
L21

3(
p
E

k
ln@~r 01Jk,d211Jp!ã2#. ~53!

A simplifying ~but unrealistic! feature of the Gaussian mode
is that the critical point of the film system of finite thickne
L is also determined byr 050, i.e., it remains unshifted com
pared to the bulk critical point for alld. This differs from the
case of the spherical model to be discussed in Sec. IV.

B. Bulk properties

First we briefly summarize some of the known bulk pro
erties. The square of the second-moment bulk correla
lengthj aboveTc is defined by

j25 lim
L→`

lim
L̃→`

1

2d

(
i , j

~xi2xj !
2^w iw j&

(
i , j

^w iw j&

. ~54!

It is given byj25J0r 0
21 or

j5j0t2n, n51/2 ~55!

with

j05~J0 /a0!1/2, J052J. ~56!

From Eq.~52! we have the bulk free energy density forr 0
5a0t>0

f b52
1

2
ã2dln p1

1

2Eq
ln@~r 01Jq,d!ã2#, ~57!
7-6
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where*q5(2p)2d*ddq with uqi u<p/ã,i 51, . . . ,d. Equa-
tions ~52!–~57! are defined for all integer dimensionsd
51,2, . . . .They can be extended to continuousd, as usual,
by means of analytic continuation via Euler’s Gamma fun
tion G. From Eq.~57! one obtains the singular part off b for
0,d,2 and 2,d,4

f bs5Yj2d ~58!

with the universal bulk amplitude

Y52
Rj

1d

a~12a!~22a!
52

Ad

d~42d!
, ~59!

Ad5
G~32d/2!

2d22pd/2~d22!
. ~60!

For 0,d,2 and 2,d,4, the regular part off b reads,

f 05ã2d@ c̃11r 0ã2c̃21r 0
2ã4c̃31O~r 0

3ã6!# ~61!

with d-dependent constantsc̃i . The constantsc̃1 , c̃2, andc̃3
diverge ford→0, d→2, andd→4, respectively, wheref b

attains a logarithmic dependence onr 0ã2. The bulk suscep-
tibility is simply, xb5r 0

215J0
21j2, which implies Ax

5a0
21. The critical exponents are

h50, g52n51 for all d.0 ~62!

and

a5~42d!/2 for 0,d<4 ~63!

aboveTc , in agreement with the hyperscaling relation E
~27! for d<4. Equations~59! and ~63! imply (Rj

1)d5Ad(d
22)/8 for d,4. The prefactor in Eq.~2! is simply
Axj0

2g/n5J0
21.

The second-moment bulk correlation lengthj must be
distinguished from the ‘‘exponential’’ bulk correlation leng
je in the direction of the unit vectore5(xi2xj )/uxi2xj u,
which is defined via the large-distance behavior of the an
tropic bulk correlation functionG(xi2xj )5^w iw j& @41#. For
the special case wherex5(x,0,0, . . . ) isdirected along one
of the cubic axes, the correlation function decays expon
tially as @7#

G~x!5
ã22d

4J
S ã

2puxu D
(d21)/2FsinhS ã

j1
D G (d23)/2

3e2uxu/j1@11O~ uxu21!# ~64!

with the exponential correlation length

j15F2

ã
arcsinhS ã

2j
D G21

. ~65!

We shall see that it isj1 rather thanj that determines the
exponential part of the finite-size effects aboveTc not only
for periodic boundary conditions@7# but also for free bound-
ary conditions.
05612
-

.

-

n-

C. Free energy density

In Appendix A we derive from Eq.~52! the size dependen
free energy density for box geometry for largeL/ã at fixed
L/j>0 and at fixedL/L̃ for d.1

f ~ t,L,L̃ !5 f b12 f sur f ace~ t !L211G~L/j,L/L̃ !L2d

2
1

2
ã21L̃12dln 21O~ ãL2d21,ã42dL24!,

~66!

where

f sur f ace~ t !5
ã12d

8 E
0

`

dy$y21@11e24y22e22yI 0~2y!#

3@e22yI 0~2y!#d21exp~2yr0ã2J0
21!% ~67!

with the Bessel function of order zero,

I 0~z!5
1

pE0

p

du exp~z cosu!. ~68!

Equation~66! contains the universal finite-size part

G~x,s!5
1

2E0

`

dyy21H S p

y D d/2

2
1

2
@sK~s2y!#d21FKS y

4D21G
2

1

2 S p

y D (d21)/2J e2yx2/4p2
~69!

with

K~z!5 (
m52`

`

exp~2m2z!. ~70!

We note thatf sur f ace depends on the lattice constantã, un-
like the finite-size partG(x,s). Using K(z);(p/z)1/2 for z

→0, we obtain for film geometry (L̃→`)

G~x,0!5
1

2E0

`

dyy21F S p

y D 1/2

2
1

2
KS y

4D G
3S p

y D (d21)/2

e2yx2/4p2
. ~71!

The surface part remains, of course, identical with Eq.~67!.
Equations~66!–~71! are applicable toT5Tc and toT.Tc at
fixed L/j. The correct exponential large-L/j behavior of
G(L/j,L/L̃) at fixedT.Tc is not yet included in Eqs.~69!
and ~71! as it involves the ‘‘exponential’’ correlation lengt
j1, Eq. ~65!. For largeL@j at fixedT.Tc , Eq. ~69! must
be replaced by
7-7
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G~L/j1 ,L/L̃ !5222d@L/~pj1!# (d21)/2e22L/j1

3@11O~j1
2/L2!#2~d21!

3~L/L̃ !(d11)/2@L/~2pj1!# (d21)/2e2L̃/j1

3@11O~j1
1/2L̃21/2!#. ~72!

Correspondingly, Eq.~16! must be modified for largeL@j.
The nonuniversal last term;L̃12d in Eq. ~66! contributes to
the regular partf ns(t,L,L̃) of f, thus Eq. ~15! should be
complemented accordingly. In order to clarify to what exte
the ã dependent termf sur f ace(t) contains universal contribu
tions, we need to distinguish the cases 1,d,3, d53, and
3,d,5. For this purpose it will be useful to express t
regular part linear inr 0 in terms of generalized Watson func
tions defined by@16#

Wd~z!5
1

~2p!dE0

2p

•••E
0

2p du1 . . . dud

z12(
j 51

d

~12cosu j !

~73!

5E
0

`

dye2zy@e22yI 0~2y!#d. ~74!

1. 1ËdË3

For 0<r 0ã2!1 and 1,d,3 we obtain from Eq.~67!

f sur f ace~ t !5 f sur f ace~0!1Asur f ace
1 j12d2b̃dr 0ã32dJ0

21

1O~ ã/jd! ~75!

with the universal amplitude

Asur f ace
1 52

G~~32d!/2!

2d11p (d21)/2~d21!
,0 ~76!

and with the nonuniversal constant

b̃d5
1

8E0

`

dy$@11e24y22e22yI 0~2y!#@e22yI 0~2y!#d21

2~4py!(12d)/2%. ~77!

This constant can be partially expressed in terms of gene
ized Watson function as

b̃d5
1

8
@Wd21~4!22Wd~0!#1

1

8E0

A

dy@e22yI 0~2y!#d21

1
1

8EA

`

$@e22yI 0~2y!#d212~4py!(12d)/2%

122d21p (12d)/2~d23!21A(32d)/2 ~78!

~see Appendix A!. We note thatb̃d does not depend on th
arbitrary finite constantA.0.
05612
t

l-

The second term in Eq.~75! has the expected singula
scaling form;j12d. The first termf sur f ace(0) and the third
term ;b̃d contribute to the regular part 2C1(t)L21 of
f ns(t,L,L̃). Thus the surface contribution is in accord wi
the predicted universal scaling structure of Eqs.~13!, ~15!,
~17!, and ~18!. We expect thatb̃d depends on the lattice
structure~see also Sec. III G!. We note that bothAsur f ace

1 and

the coefficientb̃d diverge ford→3 such that

lim
d→32

@ b̃d2Asur f ace
1 #5b̃ ~79!

has a finite limitb̃ ~see Appendix A!. The explicit expression
for the constantb̃ is given in Eqs.~81! and ~82! below.

2. dÄ3

For 0<r 0ã2!1 we obtain from Eq.~67! at d53

f sur f ace~ t !5 f sur f ace~0!2~16p!21j22ln~j/ã!2b̃r 0J0
21

1O~ ã/j3!. ~80!

The analytic expression for the nonuniversal constantb̃ is

b̃5
1

8E0

A

dy@11e24y22e22yI 0~2y!#e24y@ I 0~2y!#2

1
1

8EA

`

dy$@11e24y22e22yI 0~2y!#e24y@ I 0~2y!#2

2~4py!21%1~32p!21~12CE2 ln A!, ~81!

whereCE50.577 isEuler’s constant. This constant can b
partially expressed in terms of generalized Watson functi
as

b̃5
1

8
@W2~4!22W3~0!#1

1

8E0

A

dy@e22yI 0~2y!#2

1
1

8EA

`

$@e22yI 0~2y!#22~4py!21%1~32p!21

3~12CE2 ln A!. ~82!

Note thatb̃ does not depend on the arbitrary finite consta
A.0. We expect thatb̃ depends on the lattice structure~see
also Sec. III G!.

While the first and third terms of Eq.~80! contribute to
the nonuniversal regular part 2C1(t)L21 of f ns(t,L,L̃), the
second~logarithmic! term is clearly a singular contribution
to the free energy density. This implies that, ford53, Eqs.
~13! and ~16! must be replaced by

f s~ t,L,L̃,ã!5L23F̃~L/j,L/L̃,ã/j!, ~83!

where

F̃~L/j,L/L̃,ã/j!5F~L/j,L/L̃ !2~8p!21~L/j!2ln~j/ã!
~84!
7-8
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contains a logarithmic nonscaling term that depends on
nonuniversal lattice constantã. We conjecture, however, tha
the coefficient2(8p)21 is universal, i.e., independent of th
lattice structure~see also Sec. III G!. The scaling part reads

F~L/j,L/L̃ !5~12p!21~L/j!31G~L/j,L/L̃ !, ~85!

whereG(L/j,L/L̃) is given by Eq.~69! for box geometry
and by Eq.~71! for film geometry. Correspondingly, the un
versal scaling prediction of Eq.~14! must be replaced by

f s~ t,L,L̃,ã!5Yj232@~8p!21j22ln~j/ã!#L21

1L23G~L/j,L/L̃ !1O~L24!, ~86!

with the universal bulk amplitudeY52(12p)21 butwithout
a universal surface amplitude. In Sec. III D we shall see tha
this logarithmic behavior is related to the vanishing of t
surface critical exponent of the Gaussian energy densit
d53.

3. 3ËdË5

For 0<ã/j!1 we obtain, from Eq.~67!, for 3,d,5

f sur f ace~ t !5 f sur f ace~0!2B̃dr 0ã32dJ0
211Asur f ace

1 j12d

1O~ ã/jd! ~87!

with the universal amplitude

Asur f ace
1 5

G~~52d!/2!

2dp (d21)/2~d21!~d23!
.0 ~88!

and with the nonuniversal constant

B̃d5
1

8E0

`

dy$@11e24y22e22yI 0~2y!#@e22yI 0~2y!#d21%

.0. ~89!

This constant can be expressed in terms of generalized
son functions as

B̃d5 1
8 @Wd21~0!1Wd21~4!22Wd~0!#. ~90!

We note thatWd21(0) exhibits a pole;(d23)21 near d
53, where it can be represented as

Wd21~0!5222dp (12d)/2~d23!21A(32d)/2

1E
0

A

dy@e22yI 0~2y!#d21

1E
A

`

dy$@e22yI 0~2y!#d212~4py!(12d)/2%.

~91!

The right-hand side of Eq.~91! is independent of the arbi
trary constantA.0.The first two terms in Eq.~87! contrib-
05612
e

at

at-

ute to the regular part 2C1(t)L21 of f ns(t,L), whereas the
third term has the expected singular scaling form;j12d.
Thus the surface contribution is in accord with the predic
universal scaling structure of Eqs.~13!, ~14!, ~16!, and~17!.
We expect thatB̃d depends on the lattice structure~see also
Sub. III G!. We note that Eqs.~88! and ~89! are the analytic
continuations of Eqs.~76! and ~77!, respectively, fromd

,3 to d.3 and that bothAsur f ace
1 and the coefficientB̃d

diverge ford→3 such that

lim
d→31

@B̃d2Asur f ace
1 #5b̃ ~92!

has a finite limitb̃, Eq. ~81! ~see Appendix A!.

D. Energy density

Equations~18! and~52! yield the Gaussian energy densi
~divided bykB)

U~ t,L,L̃ ![2
T2a0

2Tc
E~r 0 ,L,L̃,ã! ~93!

with

E~r 0 ,L,L̃,ã!5L̃12dL21(
k,p

~r 01Jk,d211Jp!21. ~94!

In the following, we must distinguish the casesT5Tc and
T.Tc . Using Eqs.~18! and ~66!–~70! we obtain for T

.Tc and for largeL/ã and largej/ã at fixed L/j.0 and
fixed L̃/L in 2,d,4 dimensions

U~ t,L,L̃ !5Ub~ t !12Usur f ace~ t !L21

1Tcj0
22E~L/j,L/L̃ !L22d1O~ ãL12d!,

~95!

where Ub(t)52T2] f b /]T is the bulk part ofU(t,L,L̃).
NearTc the surface energy density is given by

Usur f ace~ t ![
Tcã

32d

8j0
2

Esur f ace~r 0ã2J0
21! ~96!

with

Esur f ace~z!5E
0

`

dy$@11e24y22e22yI 0~2y!#

3@e22yI 0~2y!#d21e2yz%, ~97!

where z[r 0ã2J0
21. Equation ~97! can be expressed com

pletely in terms of generalized Watson functions as

Esur f ace~z!5Wd21~z!1Wd21~z14!22Wd~z!. ~98!

The universal functionE(x,s)52 1
2 x21]G(x,s)/]x of the

finite-size part reads
7-9
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E~x,s!5
1

8p2E0

`

dyH S p

y D d/2

2
1

2
@sK~s2y!#d21FKS y

4D21G
2

1

2 S p

y D (d21)/2J e2yx2/4p2
~99!

for box geometry and

E~x,0!5
1

8p2E0

`

dyF S p

y D 1/2

2
1

2
KS y

4D G S p

y D (d21)/2

e2yx2/4p2

~100!

for film geometry. We note thatEsur f ace depends on the lat
tice constantã, unlike the finite-size partE(x,s). Equations
~95!–~100! are not applicable toT5Tc for d<3, where the
functionsUsur f ace(0) andE(0,0) diverge. For 3,d,4, Eqs.
~95!–~100! are applicable to bothT5Tc andT.Tc at fixed
L/j>0. The correct exponential large-L behavior in terms of
j1 at fixedT.Tc is not yet included in Eq.~100!. It can be
derived fromG(L/j1 ,L/L̃), Eq. ~72!.

In order to see to what extentEsur f ace contains universa
contributions, we need to distinguish the cases 2,d,3,d
53, and 3,d,4.

1. 2ËdË3

For 0,r 0ã2!1 and 2,d,3 we obtain, from Eqs.~25!
and ~75!,

Usur f ace~ t !5
1

2
Tcj0

22@2~d21!Asur f ace
1 j32d12ã32db̃d#

1O~ ã/jd22!, ~101!

where b̃d and Asur f ace
1 ,0 are given by Eqs.~77! and ~76!.

Equation ~101! implies a divergent surface energy dens
;t12a2n with a universal surface amplitude (
2d)nAsur f ace

1 .0 and with the critical exponent

12a2n5~d23!/2,0, ~102!

in accordance with the singular finite-size scaling part of E
~26!. Thus, for 2,d,3,Us(t,L,L̃) satisfies the scaling pre
diction of Eqs.~19! and ~20! with the critical exponent (1
2a)/n5d22 and with the universal scaling function forx
.0

U~x,s!52dnYxd2222~d21!nAsur f ace
1 xd2312nE~x,s!,

~103!

where the universal bulk amplitudeY is given by Eq.~58!.
The functionE(x,s) diverges as;xd23 for x→0. This di-
vergence is canceled by the surface term, which implies
finite limit

U~0,s!5 lim
x→0

U~x,s!5Ed~s!, ~104!

where
05612
.

e

Ed~s!5
1

8p2E0

`

dyH S p

y D d/2

2
1

2
@sK~s2y!#d21FKS y

4D21G J
~105!

for box geometry and

Ed~0!5
1

8p2E0

`

dyS p

y D (d21)/2H S p

y D 1/2

2
1

2 FKS y

4D21G J
~106!

for film geometry. By a separate calculation atT5Tc we find
from Eq. ~93!,

U~0,L,L̃ !5Ub~0!1Tcj0
22@Ed~s!L22d12b̃dã32dL21#

1O~ ã22d/2L2d/2,e2L̃/ã! ~107!

in agreement with the scaling parts, Eqs.~105! and~106!. We
note thatAsur f ace

1 , Ed and b̃d diverge ford→3.

2. dÄ3

For 0,r 0 /ã2!1 and ford53 we obtain, from Eqs.~24!,
~80! and ~95!–~100!,

U~ t,L,L̃ !5Ub~ t !1@2Usur f ace~ t !1Tcj0
22E~L/j,L/L̃ !#L21

1O~ ãL24! ~108!

with

Usur f ace~ t !5
1

2
Tcj0

22@~8p!21ln~j/ã!12b̃2~8p!21

1O~ ã/j!#, ~109!

whereb̃ is given by Eq.~81!. Thus, as a special property o
the Gaussian model, there exists a logarithmically diverg
surface energy density with an explicit dependence on
lattice spacingã. This could have been anticipated on ge
eral grounds because of 12a2n50 for d53. ~This is par-
allel to logarithmic terms for systems with periodic bounda
conditions at the borderline dimension where the spec
heat exponenta vanishes@44#.! Thus, Eq.~26! is not appli-
cable and the universal scaling prediction for the singu
part Us(t,L,L̃), Eqs.~20!–~22!, must be replaced by

Us~ t,L,L̃,ã!5Tcj0
22L21Ũ~L/j,L/L̃,ã/j!, ~110!

where

Ũ~L/j,L/L̃,ã/j!5U~L/j,L/L̃ !1~8p!21ln~j/ã!
~111!

with the scaling part

U~x,s!52dnYx1E~x,s!2~16p!21. ~112!

We identify the nonsingular part as
7-10
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Uns~ t,L,L̃ !5Ub~ t !2Ubs~ t !1Tcj0
22b̃L211O~ ãL24!.

~113!

The functionE(x,s) diverges logarithmically forx→0. This
divergence is canceled byUsur f ace(t), which implies that
Eq. ~108! has a finite limit fort→0 at fixedL and L̃,

U~0,L,L̃ !5Ub~0!1Tcj0
22$2~8p!21L21ln~ ã/L !1@ b̄~s!

12b̃#L21%1O~ ã1/2L23/2,e2L̃/ã! ~114!

with the universal constant

b̄~s!5
1

8p2EA

`

dyH ~p/y!3/22
1

2
@sK~s2y!#2@K~y/4!21#J

1
1

8p2E0

A

dyH ~p/y!3/22
1

2
@sK~s2y!#2

3@K~y/4!21#2
p

2yJ 1~16p!21ln A2~16p!21

3@12CE12 ln~2p!#. ~115!

Note thatb̄(s) is independent of the arbitrary constantA. We
have confirmed the validity of Eqs.~114! and ~115! for d

53 by calculatingU(0,L,L̃) directly from Eq.~93! with r 0
50. Thus there exists a logarithmic nonscalingL depen-
dence of the energy density atTc , with an explicit depen-
dence onã. As noted above, we conjecture, however, th
the coefficients (8p)21 and 2(8p)21 in Eqs. ~109! and
~114! are universal, i.e., independent of the lattice struct
~see also Sec III G!. In Sec. IV we shall see that the loga
rithms in Eqs.~109! and ~114! are the origin of the loga-
rithms appearing in the three-dimensional mean spher
model with free boundary conditions.

3. 3ËdË4

For 0,r 0ã2!1 and for 3,d,4 we obtain, from Eqs.
~25! and ~87!,

Usur f ace~ t !5Usur f ace~0!2Tcj0
22~d21!Asur f ace

1 j32d

1O~ ãj22d! ~116!

with the finite critical value

Usur f ace~0!5Tcj0
22ã32dB̃d.0, ~117!

whereAsur f ace
1 .0 andB̃d are given by Eqs.~88! and ~89!.

The singular second term;j32d yields a divergent slope
;t (d25)/2 for t→01, thus Usur f ace(t) has a nonuniversa
finite cusp att50 for 3,d,5, in contrast to thed<3 case.
As a consequence, only the temperature dependent cont
tions ;j32d and;E(L/j,L/L̃L) to the energy density
05612
t

e

al

u-

U~ t,L,L̃ !5Uns~0,L !2Tcj0
22~d21!Asur f ace

1 j32dL21

1Tcj0
22E~L/j,L/L̃ !L22d1O~ ãL12d! ~118!

have a universal scaling form. The nonuniversal critic
value Usur f ace(0), Eq. ~117!, increases ford→3. It enters
the finite energy density atTc

Uns~0,L,L̃ !5Ub~0!12Usur f ace~0!/L1O~ ãL12d!,
~119!

which belongs to the nonuniversal nonsingular part
U(t,L,L̃) and which has a nonscalingL dependence;L21.
This L dependence is non-negligible. This will have signi
cant consequences for the mean spherical model ind.3
dimensions to be discussed in Sec. IV.

E. Specific heat

Equations~29! and~93! yield the specific heat~divided by
kB)

C~ t,L !5
T2a0

2

2Tc
2

L21L̃12d(
k,p

~r 01Jk,d211Jp!22

2
Ta0

Tc
L21L̃12d(

k,p
~r 01Jk,d211Jp!21.

~120!

From the first term of Eq.~120! we find full agreement with
the finite-size scaling prediction, Eq.~30!, in 2,d,4 di-
mensions with 2/n54, a/n542d. Specifically we find, for
large L/ã and j/ã at fixed L/j>0 and fixedL̃/L, the uni-
versal scaling function forx>0

C~x,s!5
1

64p4E0

`

dyy@sK~s2y!#d21FKS y

4D21Ge2yx2/4p2

~121!

for box geometry and

C~x,0!5
1

32p4E0

`

dyyS p

y D (d21)/2

e2x2y/4p2

(
n51

`

e2n2y/4

~122!

for film geometry. The evaluation of the second term of E
~120! can be taken directly from Sec. III D for the energ
density and yields only subleading corrections to the fi
term of Eq.~120!. For T.Tc , Eqs.~121! and ~122! can be
decomposed as
7-11
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C~x,s!52
1

4
d~d22!Yxd241AC,sur f ace

1 xd25

2
1

32p4E0

`

dyyH S p

y D d/2

2
1

2
@sK~s2y!#d21

3FKS y

4D21G2
1

2 S p

y D (d21)/2J e2yx2/4p2
~123!

and

C~x,0!52
1

4
d~d22!Yxd241AC,sur f ace

1 xd25

2
1

32p4E0

`

dyy~p/y!(d21)/2

3F ~p/y!1/22
1

2
KS y

4D Ge2yx2/4p2
, ~124!

where the bulk part~first term! contains the universal bulk
quantity Y, Eq. ~59!, and where the surface part~second
term! has the universal surface amplitude

AC,sur f ace
1 5222d21p (12d)/2G~~52d!/2! ~125!

5
1

2
~d21!~32d!Asur f ace

1 ~126!

with Asur f ace
1 given by Eqs.~76! or ~88!, in agreement with

the predicted structure of the surface specific heat, Eqs.~33!
and~35!. Equations~124!–~126! can be easily confirmed b
calculating the derivative]U/]T from Eqs.~95!–~100!.

Equations~123! and ~124! do not yet include the correc
exponential part of the large-L behavior at fixedT.Tc
which involves the exponential correlation lengthj1 @7# and
which can be derived from Eq.~72!.

F. Susceptibility

The thermodynamic quantity of primary interest in t
mean spherical model in Sec. IV will be the susceptibili
Important steps in the calculation of its finite-size propert
can be performed already on the level of the Gaussian mo
For box geometry the susceptibility is defined by

x~ t,L,L̃ !5
ã2d

L̃d21L
(
i , j

^w iw j&. ~127!

Substituting the representation Eq.~46! into Eq. ~127!, we
find

(
j

w j5
ã12d

~L1ã!A2
(

p
ŵ0,p@12~21!n#

sin~pã!

12cos~pã!
,

~128!
05612
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x~ t,L,L̃ !5
ã2

L~L1ã!2 (
p

@12~21!n#cot2~pã/2!^ŵ0,pŵ0,p&

~129!

with n[p(L1ã)/p51,2, . . . ,L/ã. From the Gaussian
Hamiltonian Eq. ~48! we have ^ŵ0,pŵ0,p&5(L1ã)(r 0
1Jp)21, which leads to

x~ t,L,L̃ !5
ã2

L~L1ã!2 (
p

@12~21!n#
cot2~pã/2!

r 01Jp
.

~130!

We note that this expression is independent of the dimen
d and ofL̃ which is a special property of the Gaussian mod
In Appendix B we evaluate Eq.~130! for largeL/ã. For large
j/ã at fixed ratioL/j>0, we find the scaling form

x~ t,L,L̃ !5xbf ~L/j!5Lg/nF~L/j! ~131!

with g/n52 and the universal scaling function

f x~x!5
4

p2E0

`

dy~12e2yx2/p2
!@K~y!2K~4y!#,

~132!

whereK(z) is given by Eq.~70! and

F~x!5J0
21x22f x~x!, ~133!

with x5L/j. The leading terms off x(x) for largex are

f x~x!5122x211O~x22!. ~134!

For x→0 we find limx→0x22f x(x)51/12, thus the leadingL
dependence atT5Tc is in accord with the scaling predictio
Eq. ~42!, with Axj0

2g/n5J0
21 and

Bx5
1

12
, ~135!

independent of the shape factorL/L̃. In the limit L→` at
fixed T.Tc , Eqs. ~131!–~134! are valid only up to a non-
universal exponential contribution;e2L/j1 in terms ofL/j1
rather thanL/j @7#.

G. Continuum approximation with Dirichlet boundary
conditions

As a first step towards thew4 field theory with Dirichlet
boundary conditions at finite cutoffL in a confined geom-
etry, we briefly consider the continuum version of the Gau
ian model. The comparison with the lattice version will ser
to distinguish universal contributions from nonuniversal co
tributions.

The Gaussian continuum Hamiltonian for the scalar fi
w(x)5w(y,z) reads

H f ield5E ddxF r 0

2
w21

1

2
~¹w!2G . ~136!
7-12
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This corresponds to the replacements 2J→1 and Jk,d21
→k2,Jp→p2 in Eqs. ~48!–~50!, ~52!, ~56!, and ~57!. The
wave numbers of the Fourier components of the fieldw(x)
are assumed to have a finite sharp cutoffL. Although there
exists no real system with a sharp cutoff the sharp-cu
procedure is of significantconceptualrelevance as it may
signal important physical effects in real systems with s
leading long-range interactions@7,8,45#.

As a consequence of the sharp-cutoff procedure, the b
correlation functionG(x)5^w(x)w(0)& has an oscillatory
power-law decay aboveTc . For the anisotropic cutoffuqi u
<L,i 51, . . . ,d we find the anisotropic nonexponenti
large-distance behavior

G~x!52dLd22~d1j22L22!21)
i 51

d
sin~Lxi !

Lxi
1O~e2uxu/j!,

~137!

in contrast to the exponential decay of the lattice correlat
function, Eq.~64!. Thus the sharp cutoff induces long-ran
correlations, as expected@7,8,45#. For an isotropic sharp cut
off uqu<L, see Ref.@8#.

The bulk free energy density aboveTc is for 2,d,4 and
for 0,d,2

f b, f ield5Yj2d1 f 0,f ield ~138!

with the regular part

f 0,f ield5Ld@ ĉ11r 0L22ĉ21r 0
2L24ĉ31•••#. ~139!

The constantsĉ1 , ĉ2, and ĉ3 diverge ford→0,d→2 andd
→4, respectively, wheref b, f ield attains a logarithmic depen
dence onr 0L22.

In the following, we assume aL3`d21 film geometry,
with Dirichlet boundary conditionsw(y,0)5w(y,L)50 at
the top and bottom surfaces. The continuum version of
~53! is

f f ield~ t,L !52
1

2
Ldln p1

1

2
L21

3(
p
E

k
ln@~r 01k21p2!L22#. ~140!

The sum (p runs over wave numbersp5pn/L,n
51,2, . . . , in therange 0,p,L, and the componentski are
restricted touki u<L,i 51,2, . . . ,d21. For largeLL at fixed
L/j>0, we find, for 2,d,4

f f ield~ t,L !5 f b, f ield12 f̂ sur f ace~ t !L211 f̂ 2~r 0L22!Ld22L22

1G~L/j!L2d1O~Ld24L24!, ~141!

where

f̂ sur f ace~ t !5
Ld21

8 E
0

`

dyy21~12e2y!S~y!d21

3exp~2yr0L22! ~142!
05612
ff

-

lk

n

q.

and

f̂ 2~r 0L22!5
p

12E0

`

dye2yS~y!d21exp~2yr0L22!

~143!

with

S~y!5
1

2pE21

1

dqexp~2q2y!. ~144!

For the universal functionG(L/j) see Eq.~71!.
In order to exhibit the universal and nonuniversal con

butions to f̂ sur f ace(t), we need to distinguish the cases
,d,3,d53,3,d,4. For 2,d,3 we find, from Eq.
~142!,

f̂ sur f ace~ t !5 f̂ sur f ace~0!1Asur f ace
1 j12d2b̂dr 0Ld23

1O~r 0
2Ld25! ~145!

with the nonuniversal constant

b̂d5
1

8E0

`

dy@~12e2y!S~y!d212~2p!12d~p/y!(d21)/2#.

~146!

The universal amplitudeAsur f ace
1 ,0 is given by Eq.~76!.

For d53, we find a logarithmic nonscaling term similar t
that of Eq.~80!

f̂ sur f ace~ t !5 f̂ sur f ace~0!2~16p!21j22ln~Lj!2b̂r 0

1O~L22j24! ~147!

with the universal prefactor (16p)21 and with the nonuni-
versal constant

b̂5
1

32p
1

1

8E0

`

dy$~12e2y!@S~y!22~4py!21#%.

~148!

For 3,d,4, we find

f̂ sur f ace~ t !5 f̂ sur f ace~0!2B̂dr 0Ld231Asur f ace
1 j12d

1O~L22j24! ~149!

with the universal amplitudeAsur f ace
1 .0, Eq.~88!, and with

the nonuniversal constant

B̂d5
1

8E0

`

dyS~y!d21~12e2y!.0. ~150!

As expected,f f ield(t,L) and f̂ sur f ace(t) contain the same
universal parts as the corresponding functions of the lat
model. The nonuniversal constantsb̂d , b̂, andB̂d , however,
differ from the corresponding constantsb̃d , b̃, andB̃d of the
lattice model. Ford→3, b̂d , andB̂d are divergent.
7-13
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As an additional effect of the sharp cutoff, there exists
nonuniversal contributionL22 to the free energy in Eq
~141!. For d.2, this term is non-negligible compared to th
universal scaling term;L2d, but it has a regular depen
dence onr 0;t and therefore can be considered to belong
the nonsingular partf ns(t,L) of the free energy density. Nev
ertheless, it yields a leading nonuniversal contribut
;Ld22L22 to the Casimir force atTc , similar to that for
periodic boundary conditions discussed in Ref.@8#.

We briefly summarize the results for the energy dens
U f ield(t,L) as derived from Eqs.~141!–~150!. For 2,d
,3, we obtain

U f ield~ t,L !5Ub, f ield~ t !1Tcj0
22@~12d!Asur f ace

1 j32d

1Ld23b̂d#L211Tcj0
22E~L/j!L22d

1O~Ld22L22!. ~151!

The singular part is in full agreement with the finite-si
scaling structure. Ford53, the energy density reads fo
largeLL at fixed t.0,

U f ield~ t,L !5Ub, f ield~ t !1@2Ûsur f ace~ t !1Tcj
22E~L/j!#L21

1O~LL22! ~152!

with

Ûsur f ace~ t !5 1
2 Tcj0

22@~8p!21ln~Lj!12b̂2~8p!21

1O~L21j21!#. ~153!

In the limit t→0, at fixedL, we obtain

U f ield~0,L !5Ub, f ield~0!1Tcj0
22@~8p!21L21ln~LL !

1~ b̄12b̂!L211O~L21/2L23/2!# ~154!

with the universal constantb̄, Eq. ~115!, and the nonuniver-
sal constantb̂, Eq. ~148!. The logarithmic nonscaling behav
ior in Eqs. ~153! and ~154! is parallel to that in Eqs.~109!
and ~114! of the lattice model in Sec. III D. The prefacto
(8p)21 in Eqs.~153! and~154! are the same as in Eqs.~109!
and~114! of the lattice model and are expected to be univ
sal.

For 3,d,4, Eqs.~116!–~119! remain valid ifã32dB̃d is
replaced byLd23B̂d . Thus the surface energy density is

Ûsur f ace~ t !5Ûsur f ace~0!2Tcj0
22~d21!Asur f ace

1 j32d

1O~L21j22d! ~155!

with a finite critical value

Ûsur f ace~0!5Tcj0
22Ld23B̂d.0. ~156!

The singular part;j32d is in agreement with finite-size
scaling but is subleading compared to the regular part
expected from the lattice model.
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For completeness, we note that the specific heat and
susceptibility of the Gaussian continuum model with fr
boundary conditions are in full agreement with finite-si
scaling for 2,d,4, with the same scaling functions a
those in Secs. III E and III F for the lattice model, as e
pected.

H. Dimensional regularization

The method of dimensional regularization has been e
ployed in all previous analytic calculations of finite-size a
surface effects within thew4 theory with Dirichlet boundary
conditions. This method neglects the cutoff and lattice
fects. This is justified provided that the leading terms a
universal. This is the case, however, only ford,d* , where
d* is a certainupper borderline dimension. In the presen
context of the Gaussian model with Dirichlet boundary co
ditions, there exist the following upper borderline dime
sions:d* 50 for the bulk free energy densityf b , d* 51 for
the surface free energyf sur f ace, d* 52 for the bulk energy
densityUb , d* 53 for the surface energy densityUsur f ace,
d* 54 for the bulk specific heatCb and bulk susceptibility
xb , and d* 55 for the surface specific heatCsur f ace and
surface susceptibilityxsur f ace. The method of dimensiona
regularization correctly accounts for the leading univer
parts only ford,d* ~where the cutoff and lattice effects ar
negligible corrections! and provides an analytic continuatio
to d.d* . It does not correctly describe, however, the cuto
and lattice-dependent terms ford>d* . The upper borderline
dimensiond* 53 for the Gaussian surface energy dens
will play an important role for the three-dimensional me
spherical model in Sec. IV.

We begin with the analytic expression for the bulk fr
energy density of the Gaussian model ind dimensions within
the dimensional regularization scheme@26#,

f b,dim~ t !5222d21p2d/2G~2d/2!j2d. ~157!

According to Eqs.~58!–~60!, f b,dim(t) indeed agrees with
the singular partf bs(t) of the bulk free energyf b in 2,d
,4 and 0,d,2 dimensions. The neglected terms are ju
those of the regular partf 0. The latter is ultraviolet divergen
for d>0 dimensions according to Eqs.~61! and~139!. Near
d52, the right-hand side of Eq.~157! has a pole;(d
22)21 and therefore does not capture the logarithmic te
perature dependence off bs(t) in d52 dimensions.

Next we consider the size-dependent free energy den
of the Gaussian modelf dim(t,L) for film geometry within
the dimensional regularization scheme. We find, for gene
d,

f dim~ t,L !5 f b,dim~ t !12Asur f ace
1 j12dL211G~L/j!L2d,

~158!

whereAsur f ace
1 andG(L/j) are given by Eqs.~76! and ~71!,

respectively. An alternative representation is given in E
~6.3! of Ref. @26#. Equation ~158! indeed agrees with the
singular partf s(t,L) calculated in Sec. III for 2,d,3 and
for 3,d,4. For d53, however, the singular part depen
explicitly on the cutoff or the lattice spacing according
7-14
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Eq. ~147! or ~86!. This is reflected in the dimensionally regu
larized result Eq.~158! only as a pole term;(d23)21 aris-
ing from Asur f ace

1 . Thus Eq.~158! does not correctly de
scribe the leading singular temperature dependence;t ln t of
the surface free energy of the Gaussian continuum and la
model in three dimensions according to Eqs.~86! and~147!.

Finally, we consider the dimensionally regularized res
for the size-dependent energy density aboveTc ,

Udim~ t,L !5Ub,dim~ t !1Tcj0
22@~12d!Asur f ace

1 j32dL21

1E~L/j!L22d#. ~159!

For T→Tc this yields

Udim~0,L !5Tcj0
22EdL22d ~160!

as confirmed by a direct calculation atT5Tc . We see that
these expressions fail atd53 whereAsur f ace

1 andEd do not
exist because of pole terms;(d23)21 as noted already by
Dohm @36#. Equation~159! does not capture the logarithm
divergence; ln t of the surface energy density forT→Tc at
d53 according to Eqs.~109! and~153!, and in Eq.~160! the
leading size dependence;L21ln L of U(0,L) for L→` at
d53 is lacking, compare Eqs.~114! and ~154!.

Also for d.3, Eqs.~159! and ~160! are not satisfactory
since they contain only terms that are subleading compa
to the finite energy density atTc , Eq. ~119!. The latter term
that exhibits anonscaling Ldependence is missing in Eq
~159! and ~160!.

As far as thew4 field theory is concerned, it is not clear
present whether these shortcomings are only an artifac
stricted to the Gaussian approximation~corresponding to
one-loop order of thew4 theory! or there exist further short
comings at two-loop order. For this reason we do not c
sider universal finite-size scaling to be firmly established
nonperiodic boundary conditions since the earlier fie
theoretic results of Refs.@24–30# are based on a perturbatio
approach using Gaussian propagators within the dimensi
regularization scheme. On the other hand, we note that
singular parts of both the specific heat and the susceptib
are correctly described for the Gaussian model in 2,d,4
dimensions by means of dimensional regularization.

IV. Mean spherical model with free boundary conditions

Again we considerN scalar spin variablesSi ,2`<Si
<`, on the lattice pointsxi of a simple-cubic lattice with a
lattice spacingã in a finite rectangularL3L̃d21 box of vol-
ume V5LL̃d215Nãd. We assume the statistical weig
}e2bH with

H5ãdH 2
J

ã2
(̂
i j &

SiSj1m(
i

Si
2J ~161!

with a nearest-neighbor couplingJ.0. The ‘‘spherical field’’
m(T,L,L̃,ã) is determined as a function ofb5(kBT)21 and
of L,L̃,ã through the constraint
05612
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ãd22(
i

^Si
2&5N5~L/ã!~ L̃/ã!d21. ~162!

For ã51, Eqs.~161! and ~162! yield the standard formula
tion of the mean spherical model@16#. Keepingã as an in-
dependent nonuniversal parameter will facilitate the disti
tion between nonuniversal and universal contributions.

In the following, we assume the same boundary con
tions as for the Gaussian model of Sec. III. Thus the s
variablesSj can be represented as

Sj5L̃2(d21)~L1ã!21(
k,p

Ŝk,pexp~ ik•yj !A2sin~pzj !,

~163!

and the diagonalized Hamiltonian reads

H5
1

2
L̃2(d21)~L1ã!21(

k,p
~m̃1Jk,d211Jp!Ŝk,pŜ2k,p

~164!

with the shifted spherical field

m̃52m22J0dã22 ~165!

with J052J. For Jk,d21 andJp see Eqs.~49! and ~50!. The
parameterm̃(T,L,L̃,ã) is determined implicitly as a function
of d, T, L, L̃, and ã through the constraint equation~162!,
which now reads

ãd22L̃12dL21(
k,p

~m̃1Jk,d211Jp!215b. ~166!

The susceptibility forT>Tc,d is

x~T,L,L̃,ã!5b
ã2d

L̃d21L
(
i , j

^SiSj& ~167!

5b
ã2

L~L1ã!2 (
p

@12~21!n#

3cot2~pã/2!^Ŝ0,pŜ0,p& ~168!

5
ã2

L~L1ã!
(

p
@12~21!n#

3
cot2~pã/2!

m̃~T,L,L̃,ã!1Jp

~169!

with n[p(L1ã)/p51,2, . . . ,L/ã which is parallel to Eqs.
~127!–~130! for the Gaussian model. A significant differenc
however, is the dependence ofx ond, T, L, L̃, andã through
m̃(T,L,L̃,ã).
7-15
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A. Bulk properties

First we recall some of the bulk properties. The bulk s
ceptibility at finite wave vectorq aboveTc,d is defined by

xb~q!5 lim
V→`

b
ã2d

V (
i , j

^SiSj&e
2 iq•(xi2xj ). ~170!

The Gaussian structure ofH, Eq. ~164!, implies @32#

xb~q!215m̃b1Jq,d , ~171!

where

m̃b5m̃~T,`,`,ã!5xb~0!21[xb
21 ~172!

is determined implicitly by

ãd22b21E
q
~m̃b1Jq,d!2151. ~173!

Equation~173! is the bulk version of the constraint equatio
~166!. The square of the second-moment bulk correlat
length is determined by the susceptibility according to@32#

j25xb~0!
]

]q2
@xb~q!21#q505J0xb . ~174!

Settingxb
215m̃b50 yields the bulk critical temperatureTc,d

1

kBTc,d
5bc,d5ãd22E

q
Jq,d

21 . ~175!

We note thatTc,d is nonzero ford.2 and limd→21Tc,d
50. It is well known that the bulk critical behavior of th
mean spherical model belongs to the universality class of
n-vector model in the large-n limit @46#, thus the vanishing
of Tc,d at d52 is expected from the Mermin-Wagner the
rem @37#.

In order to elucidate the role played by the borderli
dimension d53 for the confined system we extend o
analysis tocontinuousdimensions in the range 2,d,4.
Equations~173! and ~175! can be combined as

ã22d~bc,d2b!5xb
21E

q
@Jq,d~Jq,d1xb

21!#21. ~176!

This leads to the asymptotic critical behavior aboveTc,d for
2,d,4,

xb5Axt2g, j5j0t2n, t5
T2Tc,d

Tc,d
, ~177!

where

g52/~d22!, n5~d22!21 ~178!

and

a522dn5~d24!/~d22!. ~179!
05612
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We note that these critical exponents can be considere
the Fisher-renormalized@47# Gaussian critical exponents

g5
gGauss

12aGauss
, n5

nGauss

12aGauss
, ~180!

and

a5
2aGauss

12aGauss
, ~181!

as expected from the general theory of constrained syst
@47#, with the Gaussian exponents of Sec. III

gGauss51, nGauss51/2, aGauss5~42d!/2. ~182!

The amplitudes areAx5j0
2/J0 and

j05ã@Ad /~bc,dJ0«!#1/(d22) ~183!

with «542d and the geometrical factorAd , Eq. ~60!. The
factor Axj0

2g/n in Eqs. ~2! and ~42! becomes simply
Axj0

2g/n5J0
21.

For completeness, we note that at the lower critical
mensiond52, the asymptotic behavior ofxb and j for T
→Tc,250 is exponential@48# and is derived from Eqs.~173!
and ~174! as

j5cã exp~2pbJ0!, ~184!

xb5c2ã2J0
21exp~4pbJ0! ~185!

with

c50.031 25. ~186!

The validity of universal finite-size scaling to be derived
Sec. IV C below for 2,d,3 is expected to hold also ford
52 aboveTc,250 in terms of the correlation length Eq
~184!.

B. Film critical temperature

For film geometry (L̃→`), Eqs.~166! and ~169! are re-
placed by

ãd22L21(
p
E

k
~m̃1Jk,d211Jp!215b ~187!

and

x~T,L,`,ã!5
ã2

L~L1ã!
(

p
@12~21!n#

cot2~pã/2!

m̃~T,L,`,ã!1Jp

.

~188!

Unlike the box geometry, the film geometry introduces
considerable complication in that ford.3 the film system of
thicknessL has its own sharp critical temperatureTc,d(L)
.0 different from the critical temperatureTc,d[Tc,d(`) of
the d-dimensional bulk system. As shown by Barber a
7-16
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Fisher@16#, Tc,d(L).Tc,d(`) for d>4. Here we shall show
that this is true also for 3,d<4.

The condition for criticality of the film system is
x(T,L,`,ã)2150. This condition is satisfied at a critica
valuem̃5m̃c,0, wherem̃c(L) is determined by the vanish
ing of the denominator of the lowest-mode (n51) term in
the sum of Eq.~188!,

m̃c~L !52
2J0

ã2 S 12cos
pã

L1ã
D . ~189!

We note thatm̃c(L) is independent ofd. The leading largeL
behavior is

m̃c~L !52J0p2~L1ã!221O„ã2~L1ã!24
…. ~190!

According to Eq.~187!, the corresponding critical value o
bc,d(L)5@kBTc,d(L)#21 is then given by

bc,d~L !5
ãd22

L (
p
E

k
~m̃c1Jk,d211Jp!21. ~191!

Separating the lowest-mode (n51) term we obtain for gen-
eral d

bc,d~L !5
ãd22

L E
k
Jk,d21

21 1
ãd22

L (
n52

L/ã E
k
~m̃c1Jk,d211Jp

21!.

~192!

The first integral in Eq.~192! is directly related to the critica
temperature of a (d21)-dimensional bulk system@compare
Eq. ~175!# and is infrared divergent ford<3; hence
bc,d(L)5` or @16#

Tc,d~L !50 for d<3 ~193!

for any finiteL, as expected from the Mermin-Wagner the
rem @37#. We see that for the film system of finite thickne
the dimensiond53 plays the role of alower critical dimen-
sion dl53 up to whichTc,d(L) vanishes. Thus, atfinite tem-
perature and in 2,d<3 dimensions, there exists only on
type of critical behavior for largeL near the bulk critical
temperatureTc,d.0 for the d-dimensional film system o
finite thickness.

An analysis of Eq.~191! for d.3 is presented in Appen
dix B. We find thatTc,d(L) is enhanced aboveTc,d(`) for
d.3 for sufficiently largeL@ã. This enhancement is mos
naturally expressed in terms of the dimensionless param

Db5J0@bc,d~`!2bc,d~L !#. ~194!

For largeL@ã the result is

Db54B̃dã/L2C̃d~ ã/L !d221O~ ãd/2L2d/2! ~195!

with the nonuniversal amplitudeB̃d.0, Eq. ~89!, and the
universal amplitude
05612
-

ter

C̃d5
1

8p2E0

`

dzH 122S p

z D 1/2

1ez/4FKS z

4D21G J S p

z D (d21)/2

~196!

with C̃d.0. Thus there are competing effects onTc,d(L)
from the scaling term;L22d5L1/n and the nonscaling term
;L21. The leading terms of the fractional shift are

Tc,d~L !2Tc,d~`!

Tc,d~`!
5adã/L2cd~ ã/L !d221O~ ãd/2L2d/2!

~197!

with the positive amplitudes

ad54B̃dH E
0

`

dy@e22yI 0~2y!#dJ 21

, ~198!

cd5C̃dH E
0

`

dy@e22yI 0~2y!#dJ 21

, ~199!

where I 0 is given by Eq.~68!. The amplitudead can be
expressed in terms of generalized Watson functions, see
~90! and ~74!. For d54, a4 agrees with the correspondin
amplitude of Barber and Fisher@16#.

We see that the positive shift ofTc,d(L) for d.3 is pro-
portional to the same amplitudeB̃d.0 that determines the
finite cusp of the Gaussian surface energy density, Eq.~115!.
Thus the nonscaling Gaussian cusp and the nonscaling
hancement ofTc,d(L) for film geometry are closely con
nected. In the following section we shall find that the Gau
ian cusp is also responsible for nonscaling finite-size effe
on the susceptibility for both box and film geometry in th
mean spherical model ford.3.

C. Constraint equation and susceptibility

The crucial question is whether and for which dimensi
d the susceptibility, Eq.~169!, attains the universal scalin
form of Eq.~36! for largeL,L̃,j at fixedã. This requires one
to first analyze the size dependence ofm̃ implied by Eq.
~166!. Up to a constant factor, the left-hand side of Eq.~166!
has the same form as the right-hand side of Eq.~94! for the
Gaussian energy density, thus the constraint equation~166!
can be rewritten as

E~m̃,L,L̃,ã!5bã22d, ~200!

whereE(r 0 ,L,L̃,ã) is defined by Eq.~94!. It is clear that any
nonscaling L dependence of the Gaussian functi
E(m̃,L,L̃,ã) will cause a nonscaling form of theL depen-
dence ofm̃, which, through Eq.~169!, will in turn cause a
corresponding nonscalingL dependence of the susceptibilit
This mechanism explains the existence of a borderline
mensiond53 between a scaling (d,3) and a nonscaling
(d>3) regime in the mean spherical model as a conseque
of the size dependence of the energy density of the Gaus
model, for both box and film geometry. More specifically, w
can anticipate nonscaling power laws ford.3 arising from
7-17
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the nonscaling size dependence of the finite cusp
Usur f ace;Esur f ace according to Eqs.~116!–~119!.

It turns out that the most natural parameter is notm̃ but
rather the shifted parameter

Dm5J0
21@m̃2m̃c~L !#, ~201!

wherem̃c(L) is given by Eq.~189!. We note thatDm.0 for
box geometry for any finiteL. In Appendix B we derive the
following expression for the large-L behavior of the suscep
tibility, Eq. ~169!, at fixedDmL2.0,

x5
4

J0p2
L2E

0

`

dy
12exp@2~DmL22p2!y/p2#

DmL22p2

3@K~y!2K~4y!#, ~202!

whereK(z) is defined by Eq.~70!. Equation~202! is valid
for generald.

In Appendix D we analyze Eq.~200! for largeL/ã at fixed
shape factors̃5(L1ã)/L̃.0 near the bulk critical tempera
ture. For smallt5(T2Tc,d)/Tc,d>0, we find for 2,d,4

~DmL2!(d22)/25t~L/j0!d222«~2Ad!21~L/ã!d23

3Esur f ace~Dmã2!

12«Ad
21Ẽd„~Dm!1/2L,s̃…, ~203!

whereEsur f ace(z) is given by the Gaussian surface functio
Eq. ~97!. The universal finite-size part reads for box geo
etry

Ẽd~x,s̃!5
1

16p2E0

`

dyH S p

y D (d21)/2

22S p

y D d/2

1ey/4FKS y

4D21G@ s̃K~ s̃2y!#d21J e2yx2/4p2
.

~204!

We note that the termK(y/4)2152(n51
` exp(2n2y/4)

comes from the modes with the free boundary conditio
~the z direction!, whereas the terms̃K( s̃2y)5 s̃(m52`

` exp

(2s̃2m2y) comes from the modes with the periodic bounda
conditions (d21 horizontal directions!. For film geometry
( s̃50) the latter term is reduced to (p/y)1/2, and the univer-
sal finite-size part becomes

Ẽd~x,0!5
1

16p2E0

`

dyS p

y D (d21)/2H 122S p

y D 1/2

1ey/4FKS y

4D21G J e2yx2/4p2
. ~205!

Equations~203!–~205! determineDm implicitly near Tc,d

for largeL as a function oft,L,L̃ andã. In the absence of the
ã dependent term;Esur f ace, Eq. ~203! would yield a uni-
05612
f
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versal scaling form forDmL2. According to Eq.~202!, this
would then imply a universal scaling form for the suscep
bility. From the analysis of the Gaussian model in Sec.
we know, however, that different scaling and nonscal
terms arise fromEsur f ace depending on whether 2,d,3,d
53, or 3,d,4.

1. Finite-size scaling in2ËdË3 dimensions

The asymptotic form ofEsur f ace(Dmã2) for small Dmã2

reads for 2,d,3,

Esur f ace~Dmã2!524~d21!Asur f ace
1 ~Dmã2!(d23)/218b̃d

1O„~Dmã2!(d22)/2
…; ~206!

compare Eq.~101!. Substituting Eq.~206! into Eq. ~203! we
see that the dependence onã is canceled. This implies, for a
given shape factors5L/L̃, thatDm has the universal scaling
form

Dm5L22Md~L/j,s!, ~207!

where the scaling functionMd(x,s) is determined implicitly
by

M d
(d22)/25xd2212eAd

21Ẽd~M d
1/2,s!12e~d21!

3Ad
21Asur f ace

1 M d
(d23)/2. ~208!

Substituting Eq.~207! into Eq. ~202! confirms the finite-size
scaling prediction, Eq.~36!, with the bulk susceptibilityxb

5J0
21j2 and the universal finite-size scaling function for

,d,3

f x~x,s!5
4x2

p2 E0

`

dy
12exp$2@Md~x,s!2p2#y/p2%

Md~x,s!2p2

3@K~y!2K~4y!#. ~209!

At T5Tc,d this yields the power-law Eq.~42! with g/n52
and with the universal amplitude

Bx~s!5
4

p2E0

`

dy
12exp$2@Md~0,s!2p2#y/p2%

Md~0,s!2p2

3@K~y!2K~4y!#. ~210!

The scaling results of Eqs.~209! and ~210! are applicable
also to film geometry (s50) wheref x(x,0) andBx(0) are
finite quantities ford,3. We note, however, that bothBx(s)
andBx(0) diverge ford→3. Specifically, ford→3 we find
from Eq. ~210! for box geometry at fixeds.0

Bx~s!;2p23s22~32d!21, ~211!

whereas for film geometry

Bx~0!;2p24~3/2!2/(32d). ~212!
7-18
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The different types of divergences are the consequence
mode continuum for film geometry and signal differe
forms of violations of finite-size scaling atd53 for the box
and film geometry, as will be confirmed in Sec. IV C 2 belo

At fixed t.0 we find from Eqs.~207!–~209! the leading
large-L behavior for both box and film geometry,

m̃1/25J0
1/2j21@112e~d21!~d22!21Ad

21Asur f ace
1 j/L

1O~j2/L2!#, ~213!

and

x5xb$12@4«~d21!~d22!21Ad
21Asur f ace

1 12#j/L

1O~j2/L2!%, ~214!

where Asur f ace
1 ,0 is given by Eq.~76!. Equation ~214!

yields the surface susceptibility, Eq.~38!, with the scaling
surface exponent

gs5g1n53/~d22! ~215!

and the surface amplitude

Ax,sur f ace
1 52 1

2 J0
21j0

3@4«~d21!~d22!21Ad
21Asur f ace

1 12#.

~216!

2. Violation of finite-size scaling in dÄ3 dimensions

We recall that atd53 there exists no sharp transition
box geometry and in film geometry of finite thickness oth
than the bulk transition forL→` at Tc,3.0; thus there is no
compelling reason to introduce a shifted reference temp
ture or to introduce a physical length scale other than thd
53 bulk correlation length. Atd53, the Gaussian surfac
function reads@compare Eq.~109!#

Esur f ace~Dmã2!52~4p!21ln~Dmã2!18@ b̃2~16p!21#

1O~Dm1/2ã!. ~217!

Substituting Eq.~217! into Eq. ~203! yields

Dm1/2L5tL/j01 ln~Dm1/2ã!11/228pb̃18p Ẽ3~Dm1/2L,s!

1O~Dm1/2ã! ~218!

with Ẽ3(x,s) given by Eq.~204!. Here we have replaceds̃ by
s5L/L̃ for large L/ã@1. Substituting Eq.~218! into Eq.
~202! yields the susceptibility. As a consequence of the lo
rithmic term of Esur f ace in Eq. ~217! we now have a loga-
rithmic dependence onã in Eq. ~218! that cannot be ne
glected. One expects that this causes only alogarithmic
deviation from finite-size scaling. This will be confirmed fo
box geometry but not for film geometry where we shall fi
a power-law violation of finite-size scaling. The origin of th
unexpected geometry effect atd53 comes from the differen
small x behavior of the finite-size partẼ3(x,s) for s.0 and
for s50.
05612
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(a) Box geometry.For fixeds.0, we find from Eq.~204!
the smallx behavior

Ẽ3~x,s!5
1

2
s2x222

1

8p
ln x1O~1!. ~219!

Here the first term;x22 is the contribution due to thek
50,p5p/(L1ã) mode that is the lowest mode of the di
crete mode spectrum for box geometry. Equations~218! and
~219! yield the leadingL dependence atT5Tc,3

Dm54ps2L22@ ln~L/ã!#21F11OS 1

ln~L/ã!
D G .

~220!

Substituting Eq.~220! into Eq.~202! leads to the susceptibil
ity at T5Tc,3

x52p23J0
21s22L2ln~L/ã!1O~L2!. ~221!

At fixed t.0 we find from Eq.~218! the leading large-L
behavior

m̃1/25J0
1/2j21$12@ ln~j/ã!18pb̃22#j/L

1O~@ ln~j/ã!#2j2/L2!%. ~222!

For the susceptibility, Eq.~202!, this implies

x5xb$11@2ln~j/ã!116pb̃26#j/L

1O~@ ln~j/ã!#2j2/L2!%, ~223!

which corresponds to the surface susceptibility, atd53,

xsur f ace~ t !5
1

2
J0

21j3@2 ln~j/ã!116pb̃26#. ~224!

The logarithms in Eqs.~221!–~224! constitute logarithmic
deviations from universal finite-size scaling, with an expli
dependence on the nonuniversal lattice constantã. Thus
there exists no universal scaling form for box geometry
d53 in the sense of Eq.~36!. This is the consequence of th
upper borderline dimensiond* 53 for the surface energy
density of the Gaussian model.

(b) Film geometry.A separate analysis is necessary f
film geometry in d53 dimensions since Eqs.~220! and
~221! do not have finite limits fors→0. The susceptibility is
again given by Eq.~202!, where nowDmL2 is determined
implicitly by

Dm1/2L5tL/j01 ln~Dm1/2ã!11/228pb̃

18p Ẽ3~Dm1/2L,0! ~225!

with
7-19
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Ẽ3~x,0!5
1

16pE0

`

dyy21H 122S p

y D 1/2

1ey/4FKS y

4D21G J e2yx2/4p2
. ~226!

We find from Eq.~226! the small-x behavior

Ẽ3~x,0!52
3

8p
ln x1Ẽ31O~x2ln x!, ~227!

where

Ẽ35
3

16p F2CE1 lnS A

4p2D G1
1

16pE0

A

dyy21H 122S p

y D 1/2

1ey/4FKS y

4D21G J 1
1

8pEA

`

dyy21H 2S p

y D 1/2

1 (
n52

`

e2(n221)y/4J ~228!

is independent of the arbitrary constantA.0. The absence
of a term;x22 in Eq. ~227! is a consequence of the fact th
for film geometry there exists a modecontinuum, without a
discrete lowest mode. At the bulk critical temperatureT
5Tc,3 , Eqs.~225! and~227! yield the constraint equation in
the form

Dm1/2L5 ln~Dm1/2ã!11/218p~Ẽ32b̃!23 ln~Dm1/2L !

1O„DmL2ln~DmL2!…. ~229!

We recall that the first logarithmic term in Eq.~229! is the
signature of the~upper! borderline dimensiond* 53 at
which the critical exponent 12a2n of the Gaussian surfac
energy density vanishes, whereas the second logarith
term in Eq.~229! is the signature of the~lower! borderline
dimension dl53 at which the film critical temperatur
Tc,3(L) vanishes, in accord with the Mermin-Wagner the
rem @37#. Both logarithmic terms can be combined as

ln~Dm1/2ã!23 ln~Dm1/2L !5 ln~ ã/L !2 ln~DmL2!
~230!

and, after substituting into Eq.~229!, yield the solution with
a power-law~rather than logarithmic! L dependence

Dm5ÃmãL23@11O~ ã1/2L21/2!# ~231!

with the nonuniversal amplitude

Ãm5exp$1/218p~Ẽ32b̃!%. ~232!

ThusDm has a nonscaling size dependence atT5Tc,3 . Sub-
stituting Eq.~231! into Eq.~202! leads to the susceptibility a
Tc,3

x5~J0Ãmã!21L3@11O~ ã1/2L21/2!#, ~233!
05612
ic
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which constitutes a strong power-law violation of the scali
predictionx;L2, Eq. ~42!, in contrast with the logarithmic
deviation in Eq.~221! for box geometry. The same violatio
persists in the critical regionjL*1. The unexpected differ-
ence between Eqs.~233! and ~221! results from the differ-
ence between the discrete mode spectrum for box geom
and the mode continuum for film geometry at the lower b
derline dimensiondl53 above which the film critical tem-
perature becomes finite. We emphasize that the existenc
this borderline dimensiondl53, which causes the secon
logarithmic term in the constraint equation~229!, is not re-
stricted to the spherical model. It remains to be seen whe
similar geometry-dependent effects exist atd53 also in
other models ofO(n) symmetric systems withn>2 and
with free ~or Dirichlet! boundary conditions.

At fixed T.Tc,3 , for film geometry, we find the sam
leading large-L behavior as already given in Eqs.~222!–
~224! for box geometry, with a logarithmic~rather than
power-law! violation of finite-size scaling. In summary, it i
not possible to writex in a universal finite-size scaling form
in the sense of Eqs.~1! and~2!, in the regionT>Tc,3 for film
geometry atd53.

(c) Comparison with Barber and Fisher.The susceptibil-
ity of the mean spherical model in film geometry with fre
boundary conditions was calculated by Barber and Fis
@16# using a different mathematical technique. Ford53 they
introduced a ‘‘quasicritical temperature shift’’ and found tha
for large n[L/ã, there exists a scaling representation
terms of a scaled temperature variablenDK̇

xBF5
n2

2J
X~nDK̇ !, ~234!

with a shifted inverse temperature deviation from thed53
bulk critical temperatureTc,3

DK̇5
J

kBTc,3
2

J

kBT
2

1

8pn
ln n1C̃BF /n, ~235!

C̃BF5
1

2 FW3~0!2
1

2
W2~4!2

7 ln 2

16p G . ~236!

The scaling function was represented parametrically via

X~z!5y22@12~2/y!tanh~y/2!#, ~237!

8pz5 ln@~sinhy!/y# ~238!

and was plotted forz.0 in Fig. 4 of Ref.@16#. For finite
L/ã@1 and atDK̇50, Eq. ~235! defines a ‘‘quasicritical’’
@16# temperatureT̃(L).Tc,3 , where

J

kBT̃~L !
5

J

kBTc,3
2

ã

8pL
lnS L

ã
D 1C̃BFã/L. ~239!

We note that all thermodynamic quantities are smooth fu
tions of T nearT̃(L) and that there exists nophysicalcrite-
rion for definingT̃(L). The analysis of the susceptibility in
7-20
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terms ofDK̇ in Ref. @16# was restricted toDK̇>0 and did
not include the regionTc,3<T,T̃(L), j/L@1 which is of
principal interest for testing the scaling predictions of E
~1! and ~2!.

Our dimensionless susceptibilityx/ã2 corresponds to
xBF . Our explicit result forx/ã2, however, is at variance
with that of Barber and Fisher since Eqs.~202!, ~225!, and
~226! cannot be reduced to the simple form of Eqs.~234!–
~238!. Our result differs from that of Ref.@16# both in the
regionTc,3<T,T̃(L) and in the regionT>T̃(L). A unique
analytic comparison betweenx/ã2 andxBF can be made in
the regionL/j@1 at fixedT aboveT̃(L). Substituting into
xBF the large-z representation according to Eq.~9.17! of Ref.
@16#

X~z!5~8pz!2222~8pz!23ln~16pez!1O~z24ln z!

~240!

and rewriting the resulting expression in terms of the b
susceptibility xBF

bulk and the asymptotic bulk correlatio
length @compare our Eqs.~177!, ~183!#

j5
ã

8p

kBTc,3

J
t21, ~241!

we find

xBF5xBF
bulkH 11F2lnS j

ã
D 1CBFG j

L
1OS j2

L2D J ~242!

with

CBF5221
3

2
ln 2116pF1

4
W2~4!2

1

2
W3~0!G . ~243!

While the leading logarithmic term;@ ln(j/ã)#j/L of Eq.
~242! agrees with ours in Eq.~223!, the leading correction
term ;j/L differs from ours. We note that our constantb̃,
Eq. ~82!, does contain the last two terms ofCBF , but the
additional integral expressions in Eq.~82! are missing in
CBF , Eq. ~243!. Our integral expressions come from the
nite part of Wd21(0) for d→3, after subtracting the pole
term;(d23)21, see Eq.~91!. We believe that our result fo
b̃ is correct since it has been obtained both by a calcula
directly at d53 and by a calculation atdÞ3, taking the
limits d→31 and d→32. A further analytic comparison
between ourx/ã2 and xBF can be made directly atT
5T̃(L), wherexBF is simply given byxBF5(n2/2J)X(0)
with X(0)51/12 according to Eq.~9.18! of Ref. @16#. Our
result atT5T̃(L) depends onb̃ and differs from the simple
result forxBF . Thus we doubt the correctness of the pre
ous result@16# for xBF for free boundary conditions atd
53.
05612
.

k

n

-

3. Violation of finite-size scaling in3ËdË4 dimensions

From Eqs.~96!, ~116!, and ~117! we have the Gaussia
surface function ford.3,

Esur f ace~Dmã2!58ã32dB̃d24~d21!

3Asur f ace
1 ~Dmã2!(d23)/2

1O„~Dmã2!(d22)/2
…, ~244!

whereAsur f ace
1 .0 andB̃d are given by Eqs.~88! and ~89!.

Substituting Eq.~244! into Eq. ~203! yields

~DmL2!(d22)/25t~L/j0!d2212«~d21!

3Ad
21Asur f ace

1 ~DmL2!(d23)/2

24«Ad
21B̃d~L/ã!d23

12«Ad
21Ẽd~Dm1/2L,s!. ~245!

We see that the finite value ofEsur f ace(0);B̃d.0 causes a
non-negligible term;(L/ã)d23 in Eq. ~245! that depends on
the lattice spacingã. This will imply power-law violations of
finite-size scaling for box geometry.

At fixed s5L/L̃.0, Eq.~245! yields theL dependence a
T5Tc,d , for 3,d,4,

Dm5 1
2 ãd23B̃d

21sd21L12d@11O~ ãd23L32d!#. ~246!

For the susceptibility atT5Tc,d , this implies

x54J0
21ã32dB̃ds12dLd21@11O~ ãd23L32d!#, ~247!

in contrast to the scaling predictionx;L2, Eq. ~42!.
At fixed T.Tc,d we find from Eq.~245! the leading large-

L behavior

m̃1/25J0
1/2j21@12m̃d~j/ã!j/L1O~~j/ã!d23j2/L2!#

~248!

with the nonuniversal function for 3,d,4

m̃d~j/ã!52«~d22!21Ad
21@2B̃d~j/ã!d23

2~d21!Asur f ace
1 #. ~249!

Substituting Eqs.~248! and ~249! into Eq. ~202! yields the
susceptibility

x5xb$11@2m̃d~j/ã!22#j/L1O~~j/ã!d23j2/L2!%.
~250!

The corresponding surface susceptibility is, forj@ã and for
3,d,4,

xsur f ace5
1
2 J0

21@2m̃d~j/ã!22#j3;jd;t2d/(d22).
~251!

This is in contrast to the scaling predictionxsur f ace;xbj
;t23/(d22), Eqs.~37! and ~38!.
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We see that the amplitudes of the leading nonsca
terms are proportional toB̃d , both for the size dependence
Tc,d , Eq. ~247!, and for the temperature dependence ab
Tc,d , Eqs.~250! and~251!. Thus it is the cusp of the Gauss
ian surface energy density that is the origin of the nonsca
effects in the mean spherical model for 3,d,4 rather than
an enhanced transition temperature that does not exis
box geometry.

For film geometry in 3,d,4 dimensions a new analys
of our solution would be necessary since there exists a s
critical temperatureTc,d(L).Tc,d(`). Here we only note
that the leading size dependence at fixedT.Tc,d(L) for film
geometry is the same as given in Eqs.~248!–~251! for box
geometry. It is expected that a full description of the cro
over from the L-dependent film critical behavior nea
Tc,d(L) to the d-dimensional bulk critical behavior nea
Tc,d(`) would involvetwo different correlation lengths. Ou
solution forx does provide the basis for such an analysis
a dimensional crossover, which, however, is beyond
scope of our present paper.
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APPENDIX A: GAUSSIAN FREE ENERGY DENSITY

In this appendix we derive the asymptotic form, Eq.~66!,
for the free energy density of the Gaussian lattice model
box geometry. We start from Eq.~52!. Using the representa
tion

ln z5E
0

`

dyy21~e2y2e2zy!, ~A1!

we rewrite theL-dependent part

D f ~ t,L,L̃,ã![ f ~ t,L,L̃,ã!2 f b~ t !1 1
2 ã2d~ L̃/ã!12dln 2

~A2!

of the free energy density in the form

D f ~ t,L,L̃,ã!5
1

2
ã2dE

0

`

dyy21e2 r̃ 0yF~L/ã,L̃/ã,y!

~A3!

with r̃ 0[r 0ã2/(2J) and

F~L/ã,L̃/ã,y!5@S~`,y!#d2@S~ L̃/ã,y!#d21SD~ L̃/ã,y!,
~A4!

where
05612
g

e

g

or

rp

-

f
e

e

f
-

r

S~ L̃/ã,y!5~ ã/L̃ !(
k

exp@22y~12cosk!#, ~A5!

S~`,y!5~2p!21E
2p

p

dx exp@22y~12cosx!#, ~A6!

SD~L/ã,y!5~ ã/L !(
p

exp@22y~12cosp!#. ~A7!

The sums(k and(p run over dimensionless wave numbe
in the range 2p<k52pãm/L̃,p and 0,p5pãn/(L
1ã),p with integers m50,61,62, . . . and n

51,2, . . . ,L/ã, as is appropriate for periodic and fre
boundary conditions, respectively. In determining the lar
L/ã and large-L̃/ã behavior ofD f at fixed finite ratioL/L̃, it
is important to distinguish the regimes 0<y&y0 andy*y0
with

y05
L1ã

ã
~A8!

in the integral representation~A3!. Accordingly, we split

D f 5 1
2 ã2d~D f 11D f 2!, ~A9!

where

D f 15E
0

y0
dyy21e2 r̃ 0yF~L/ã,L̃/ã,y!, ~A10!

D f 25E
y0

`

dyy21e2 r̃ 0yF~L/ã,L̃/ã,y!. ~A11!

First we derive the leadingL/ã and L̃/ã dependences o
D f 1. Since cosk is a periodic function, the sumS(L̃/ã,y)
satisfies the Poisson identity@49#

S~ L̃/ã,y!5 (
N52`

`

~2p!21E
2p

p

dkeikNL̃/ã

3exp@22y~12cosk!# ~A12!

5S~`,y!12e22y (
N51

`

F~NL̃/ã,y! ~A13!

with

F~M ,y!5~2p!21E
2p

p

dkeikMexp~2y cosk!5I M~2y!,

~A14!

S~`,y!5e22yI 0~2y!, ~A15!

where

I M~z!5
1

pE0

p

duez cosucos~Mu! ~A16!
7-22
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are the Bessel functions of integer orderM ~see, e.g., 9.6.19
of Ref. @50#, see also Eqs.~3.6!–~3.10! of Ref. @7#!. For y

,y0 at fixedL/L̃, the large-L̃/ã behavior ofF(NL̃/ã,y) for
N>1 is F(NL̃/ã,y);O(e2L̃/ã); thus

S~ L̃/ã,y!5S~`,y!1O~e2L̃/ã!. ~A17!

In order to determine the leadingŁ/ã dependence of the sum
SD(L/ã,y) for y,y0, we first derive a representation of th
one-dimensional integral

I ~a,b!5E
a

b

f ~x!dx ~A18!

in terms of summations. The derivation is similar to that
Eqs. ~A.21!–~A.30! of Ref. @32#. We assume the arbitrar
real functionf (x) of the real variablex to be well behaved in
the intervala<x<b; in particular, we assume thatf (x) has
a convergent Taylor expansion around anyx in this interval.
We split the intervala<x<b into N subintervals of length
Dx5(b2a)/N.0 between the pointsxi5a1 iDx, i
50,1, . . . ,N, with x05a,xN5b. The integralI can be rep-
resented as

I ~a,b!5 (
i 50

N21 E
xi

xi 11
f ~x!dx. ~A19!

For each interval we expandf (x) into a Taylor series around
xi 11 ~rather than aroundxi as in Ref.@32#!

E
xi

xi 11
f ~x!dx5E

xi

xi 11F f ~xi 11!1 (
n51

`
1

n!
f (n)~xi 11!

3~x2xi 11!nGdx ~A20!

5 f ~xi 11!Dx1 (
n51

`
~21!n

~n11!!
f (n)~xi 11!

3~Dx!n11, ~A21!

where f (n)(x)[dnf (x)/dxn. Thus we obtain

E
a

b

f ~x!dx5 (
i 50

N21

f ~xi 11!Dx1 (
n51

`
~21!n~Dx!n

~n11!!
KN

(n)~a,b!,

~A22!

where

KN
(n)~a,b!5 (

i 50

N21

f (n)~xi 11!Dx. ~A23!

Since f (x) is an arbitrary function, we may also apply E
~A22! to the functionf 8(x) instead off (x). This yields an
expression forKN

(1)(a,b) in terms of higher derivatives,
05612
KN
(1)~a,b!5 f ~b!2 f ~a!2 (

n51

`
~21!n~Dx!n

~n11!!
KN

(n11)~a,b!,

~A24!

which can be substituted into then51 term of Eq.~A22!.
Successive application of this procedure permits one to
press the difference

E
a

b

f ~x!dx2 (
i 50

N21

f ~xi 11!Dx[R̃N~a,b! ~A25!

in terms of the differences of the derivatives ata andb,

D f (k)5 f (k)~b!2 f (k)~a!. ~A26!

Note thatR̃N(a,b) differs from RN(a,b) of Ref. @32#. The
result is

R̃N~a,b!52
Dx

2
@ f ~b!2 f ~a!#2

~Dx!2

12
D f (1)1O„~Dx!4

….

~A27!

The coefficient of theO„(Dx)3
… term vanishes. SinceDx

;O(N21) this representation is expected to converge r
idly for largeN if D f (k) remains sufficiently well behaved fo
largek. Equation~A27! differs from Eq.~A30! of Ref. @32#
by a minus sign in the first term.

We apply Eqs.~A25!–~A27! to the integral

S~`,y!5
1

pE0

p

dp exp@22y~12cosp!#, ~A28!

where the integration variablep plays the role ofx in the
integral of Eq.~A25!. The sum on the left-hand side of Eq
~A25! now corresponds to

1

p (
n51

N

Dp exp$22y@12cos~nDp!#%[ Ĩ N~y! ~A29!

with Dp5p/N. SettingN5L/ã, we see that

Ĩ L/ã~y!5
L1ã

L
SD~L/ã,y!. ~A30!

We note that the derivative of the integrand of Eq.~A28!
with respect top vanishes atp50 and p5p. Equations
~A25!–~A30! yield the leading large-L/ã behavior, for y

,(L1ã)/ã,

SD~L/ã,y!5S~`,y!2
ã

2L
@11e24y22e22yI 0~2y!#

1O~ ã4/L4!. ~A31!

In order to ensure that the discretization intervalsDp become
sufficiently small for largeL/ã, the restrictiony&O(L/ã)
was necessary. For this reason, Eq.~A31! is applicable only
7-23
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to D f 1, Eq. ~A10!, but not toD f 2, Eq. ~A11!. Using Eq.
~A17! and substituting Eq.~A31! into Eqs.~A4! and ~A10!,
we arrive at

D f 15
ã

2LE0

y0
dy$y21e2 r̃ 0y@S~`,y!#d21

3@11e24y22S~`,y!#%1O~ ã4/L4,e2L̃/ã!.

~A32!

This can be combined withD f 2 in the form

D f 11D f 25
ã

2LE0

`

dy$y21e2 r̃ 0y@S~`,y!#d21

3@11e24y22S~`,y!#%1D f 3~L/ã,L̃/ã!

1O~ ã4/L4,e2L̃/ã!, ~A33!

D f 35E
y0

`

dyy21e2 r̃ 0yH @S~`,y!#d~11ã/L !

2@S~ L̃/ã,y!#d21SD~L/ã,y!2
ã

2L
@S~`,y!#d21J .

~A34!

The integral term in Eq.~A33! represents the surface contr
bution of O(L21) to D f , whereasD f 3 will yield the finite-
size part ofO(L2d). Sincey.y0 in Eq. ~A34! is sufficiently
large it suffices to use the smallk approximation22y(1
2cosk)'2k2y in Eq. ~A5!, and similarly in Eqs.~A6! and
~A7!,

S~ L̃/ã,y!'~ ã/L̃ !(
k

e2k2y

5~ ã/L̃ !K~4p2ã2L22y!1O~e2p2y!, ~A35!

S~`,y!'p21E
0

p

dke2k2y5~2p!21~p/y!1/2

1O~e2p2y!, ~A36!

SD~L/ã,y!'~ ã/L !(
p

e2p2y ~A37!

5
1

2
~ ã/L !@K~p2ã2~L1ã!22y!21#

1O~e2p2y!, ~A38!

whereK(y) is given by Eq.~70!. Furthermore, it is useful to
turn to the integration variable

z54p2ã2y/~L1ã!2. ~A39!

Instead ofy0, we then have the lower integration limitz0

54p2ã/(L1ã)→0 for largeL/ã. This leads to
05612
D f 35
ãdL21

~L1ã!d21E0

`

dzS z21H S p

z D d/2

2
1

2
@ s̃K~ s̃2z!#d21@K~z/4!21#2

1

2 S p

z D (d21)/2J
3expF2

r 0~L1ã!2

8Jp2
zG D @11O~ ã2/L2!# ~A40!

with the shape factor

s̃5
L1ã

L̃
. ~A41!

For L@ã, we finally obtain Eqs.~66!–~69!.
The surface free energy, Eq.~67!, can be expressed in

terms of the generalized Watson function, Eqs.~73! and~74!,
as follows:

f sur f ace~ t !5
ã12d

8 E
r 0ã2J0

21

`

dz@Wd21~z!1Wd21~z14!

22Wd~z!#. ~A42!

It can be shown that fordÞ3 there exists the following
common representation of the coefficientsb̃d , Eq. ~77!, and
B̃d , Eq. ~89!, of the regular term off sur f ace linear in r 0:

b̃d5B̃d5
1

8
@Wd21~4!22Wd~0!#

1
1

8E0

A

dy@e22yI 0~2y!#d211
1

8EA

`

$@e22yI 0~2y!#d21

2~4py!(12d)/2%122d21p (12d)/2~d23!21A(32d)/2.

~A43!

This expression is independent of the arbitrary constanA
.0. For d→31 and d→32, the first two terms have a
finite limit @W2(4)22W3(0)#/8, whereas the last term ex
hibits a divergence ;(d23)21 that originates from
Wd21(0)/8 for d→31 according to Eq.~91!. The same
divergence is contained inAsur f ace

1 , see Eqs.~79! and ~92!.

APPENDIX B: SUSCEPTIBILITY

We rewrite Eq.~130! as

x5
ã2

L~L1ã!
(

p
$22@11~21!n#%

cot2~pã/2!

r 01Jp
~B1!
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5
2ã4

J0L~L1ã!
(

p

11cosp

~12cosp!@ r̃ 012~12cosp!#

2
2ã4

J0L~L1ã!
(

q

11cosq

~12cosq!@ r̃ 012~12cosq!#

~B2!

with r̃ 05r 0ã2/J0. The sums(p and(q run over dimension-
less wave numbersp5pãn/(L1ã) with integers n

51,2, . . . ,L/ã and q52pãm/(L1ã) with integers m

51,2, . . . ,L/(2ã) where we have assumed thatL/ã is an
even integer. Using the decomposition

11cosx

~12cosx!@ r̃ 012~12cosx!#

52
1

r̃ 012~12cosx!
1

4

r̃ 0
F 1

2~12cosx!

2
1

r̃ 012~12cosx!
G ~B3!

and applying the representation Eq.~C2!, we obtain

x5
2ã3

J0~L1ã!
E

0

`

dyF 4

r̃ 0

~12e2 r̃ 0y!2e2 r̃ 0yGC~L/ã,y!

~B4!

with

C~L/ã,y!5SD~L/ã,y!2 1
2 S̄D~L/ã,y!, ~B5!

whereSD(L/ã,y) is given by Eq.~A7! and

S̄D~L/ã,y!5
2ã

L (
q

exp@22y~12cosq!#. ~B6!

We distinguish the regions 0<y&y05(L1ã)/ã and y

*y0. The large-L behavior ofSD(L/ã,y) in the former re-
gion is given by Eq.~A31!; the corresponding behavior o
S̄D is

S̄D~L/ã,y!5~11ã/L !S~`,y!2p ã/~L1ã!1O~ ã3/L3!,

~B7!

which follows from the Poisson identity~see, e.g., Eq.~3.6!
of Ref. @7#!. In the regiony*y0 we may use approximation
~A37! and

S̄D~L/ã,y!'~2ã/L ! (
n51

`

exp@24p2ã2yn2/~L1ã!2#

1O~e2p2y!. ~B8!

While the contributions of regiony&y0 are important for the
large L behavior ofx at fixed T.Tc , the contributions of
05612
regiony*y0 yield the finite-size scaling behavior ofx in the
critical regionL/ã@1, j/ã@1 at fixed ratiox5L/j>0, in-
cluding the leading terms of the scaling function for largex,
as given by Eqs.~131!–~135! for the Gaussian model.

The derivation ofx from Eq. ~169! is parallel to that
given above, except thatr̃ 0 is to be replaced by

m̃/J05Dm2p2/~L1ã!21O~ ã2L24!, ~B9!

where Dm is defined by Eq.~201!. At fixed M̃[Dm(L
1ã)2.0, this leads to the largeL-behavior

x5
4~L1ã!3

J0p2L
E

0

`

dyH 12exp@2~M̃2p2!y/p2#

M̃2p2

2
ã2

~L1ã!2
exp@2~M̃2p2!y/p2#J @K~y!2K~4y!#,

~B10!

whereK(z) is given by Eq.~70!. For L@ã this yields Eq.
~202!.

APPENDIX C: FILM CRITICAL TEMPERATURE
FOR DÌ3

In the following, we consider Eq.~191! for d.3. Sub-
tracting

bc,d~`!5ãd22E
p
E

k
~Jk,d211Jp!21 ~C1!

and using the representation

1

z
5E

0

`

dye2zy ~C2!

for z.0, we obtain

2J@bc,d~`!2bc,d~L !#5E
0

`

dyF̃~L/ã,y!, ~C3!

F̃~x,y!5@S~`,y!#d21H S~`,y!2SD~x,y!

3expF2yS 12cos
p

11xD G J , ~C4!

whereS(`,y) andSD(L/ã,y) are defined by Eqs.~A6! and
~A7! @see also Eq.~A15!#. It is important to distinguish re-
gimes 0<y&y0 andy*y0 with y0 given by Eq.~A8!. Ac-
cordingly, we split

E
0

`

dyF̃~x,y!5E
0

y0
dyF̃~x,y!1E

y0

`

dyF̃~x,y![D̃11D̃2 .

~C5!
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In D̃1 we use Eq.~A31!. A treatment similar to that in Eqs
~A32!–~A39! leads to

D̃11D̃254B̃d

ã

L
2C̃dS ã

L1ã
D d22S 11

ã

L
D 1O~ ãd/2L2d/2!

~C6!

with the nonuniversal amplitudeB̃d , Eq. ~89!, and the uni-
versal amplitude

C̃d5
1

8p2E0

`

dzH 122S p

z D 1/2

1ez/4FKS z

4D21G J S p

z D (d21)/2

~C7!

with C̃d.0. The first term;L21 in Eq. ~C6! has a nonscal-
ing L dependence, whereas the second term;L22d has the
scalingL dependence;L1/n. Equations~C3!–~C7! lead to
Eq. ~195!. Rewriting

11e24y22e22yI 0~2y!52e22y@cosh~2y!2I 0~2y!#
~C8!

and using~see 9.6.39 of Ref.@50#!

cosh~z!2I 0~z!52I 2~z!12I 4~z!1•••>0, ~C9!

we see thatB̃d is positiveand finite ford.3; thusTc,d(L)
.Tc,d(`) for L@ã. Using the representation

2Jbc,d~`!5E
0

`

dy@S~`,y!#d, ~C10!

we obtain the fractional shift of the film critical temperatu
as given in Eqs.~197!–~199!. We have verified thata4, Eq.
~198!, agrees with the corresponding amplitude of Barb
and Fisher@16# at d54, which was expressed in terms of th
generalized Watson function, Eqs.~73! and~74!. The ampli-
tude ad54B̃d /Wd(0), Eq. ~198!, diverges ford→3. This
divergence is canceled by the next term ofO(L22d) in Eqs.
~C6! and ~197!.

APPENDIX D: CONSTRAINT EQUATION

We start from the constraint equation~166! for box geom-
etry where we decomposem̃5J0Dm1m̃c(L) and subtract
bc,d in the form of Eq.~C1!. Furthermore we add and sub
tract

b̃~Dm![ãd22E
k
E

p
~J0Dm1Jk,d211Jp!21. ~D1!

This yields
1,

05612
r

bc,d2b5M11M2 , ~D2!

M15b̃~Dm!2ãd22L̃12dL21

3(
k,p

~J0Dm1m̃c1Jk,d211Jp!21, ~D3!

M25ãd22DmE
k
E

p
~J0Dm1Jk,d211Jp!21~Jk,d211Jp!21.

~D4!

Using the representation Eq.~C2! we obtain

J0M15E
0

`

dyF~L/ã,L̃/ã,y!exp~2Dmã2y!, ~D5!

whereF(L/ã,L̃/ã,y) is given by Eq.~A4!. Again we split
the integral in Eq.~D5! as *0

`5*0
y01*y0

` [I 11I 2 with y0

5(L1ã)/ã. For largeL/ã and L̃/ã, we find

I 15
ã

2LE0

y0
dy@11e24y22S~`,y!#@S~`,y!#d21

3exp~2Dmã2y!1O~e2L̃/ã,ãd/2L2d/2!, ~D6!

I 25
ã

L S L1ã

ã
D 32d

1

8p2Ez0

`

dzH ez/4FKS z

4D21G@ s̃K~ s̃2z!#d21

1S p

z D (d21)/2

22S p

z D d/2J 1O~ ãd/2L2d/2! ~D7!

with z054p2ã/(L1ã) and s̃5(L1ã)/L̃, where K(z) is
given by Eq.~70!. For largeL/ã we can letz0→0 in Eq.
~D7!. Evaluating the integral in Eq.~D4! for smallDm yields
for 2,d,4,

J0M25«21Ad~Dmã2!(d22)/21O~Dmã2!. ~D8!

Equations~D2!–~D8! lead to

J0~bc,d2b!5«21Ad~Dmã2!(d22)/22Esur f ace~Dmã2!

3~ ã/2L !12Ẽd„~Dm!1/2~L1ã!,s̃…

3@~L1ã!/ã#22d, ~D9!

where Esur f ace(z) and Ẽd(x,s) are given by Eqs.~97! and
~204!. Multiplying Eq. ~D9! by «Ad

21(L/ã)d22 and using

«Ad
21J0~bc2b!5t~j0 /ã!22d1O~ t2!, ~D10!

we obtain Eq.~203! for L@ã.
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